A206606 Primes that can be written as a sum of a positive square and a positive cube in more than two ways.
2089, 4481, 7057, 15193, 15641, 16649, 23417, 34721, 65537, 68489, 69697, 72577, 93241, 118673, 123209, 146161, 173897, 176401, 191969, 199873, 205721, 216233, 239633, 259121, 264169, 271169, 280009, 286289, 296353, 301409, 318313, 342233, 347993, 357569, 381529, 447569, 466273, 477577, 526249, 534577
Offset: 1
Keywords
Examples
2089 = 19^2+12^3 = 33^2+10^3 = 45^2+4^3
Links
- Robert Israel, Table of n, a(n) for n = 1..3930
Programs
-
Maple
N:= 10^6: # to get all terms <= N for x from 1 to floor(N^(1/2)) do for y from 1 to floor((N-x^2)^(1/3)) do p:= x^2 + y^3; if isprime(p) then if assigned(R[p]) then R[p]:= R[p]+1 else R[p]:= 1 fi fi od od: sort(map(op,select(t -> R[op(t)]>2, [indices(R)]))); # Robert Israel, Mar 21 2017
-
Mathematica
t={}; Do[Do[AppendTo[t,n^2+m^3],{n,300}],{m,300}]; t=Sort[t]; t3={}; Do[If[t[[n]]==t[[n+2]]&&PrimeQ[t[[n]]],AppendTo[t3,t[[n]]]],{n,Length[t]-2}]; t3; f1[l_]:=Module[{t={}},Do[If[l[[n]]!=l[[n+1]],AppendTo[t,l[[n]]]],{n,Length[l]-1}];t]; (*ExtractSingleTermsOnly*) f1[t3] (* or *) mx = 10^6; First /@ Sort@ Select[ Tally[ Join @@ Reap[(Sow@ Select[#^3 + Range[ Sqrt[mx - #^3]]^2, PrimeQ]) & /@ Range[mx^(1/3)]][[2, 1]]], #[[2]]>2 &] (* faster, Giovanni Resta, Mar 21 2017 *)
Extensions
More terms from Robert Israel, Mar 21 2017
Comments