cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206606 Primes that can be written as a sum of a positive square and a positive cube in more than two ways.

Original entry on oeis.org

2089, 4481, 7057, 15193, 15641, 16649, 23417, 34721, 65537, 68489, 69697, 72577, 93241, 118673, 123209, 146161, 173897, 176401, 191969, 199873, 205721, 216233, 239633, 259121, 264169, 271169, 280009, 286289, 296353, 301409, 318313, 342233, 347993, 357569, 381529, 447569, 466273, 477577, 526249, 534577
Offset: 1

Views

Author

Keywords

Comments

A subset of these, {65537, 93241, 191969, ..} allows this representation in more than 3 ways.

Examples

			2089 = 19^2+12^3 = 33^2+10^3 = 45^2+4^3
		

Crossrefs

Programs

  • Maple
    N:= 10^6: # to get all terms <= N
    for x from 1 to floor(N^(1/2)) do
      for y from 1 to floor((N-x^2)^(1/3)) do
        p:= x^2 + y^3;
        if isprime(p) then
          if assigned(R[p]) then R[p]:= R[p]+1
          else R[p]:= 1
          fi
        fi
      od
    od:
    sort(map(op,select(t -> R[op(t)]>2, [indices(R)]))); # Robert Israel, Mar 21 2017
  • Mathematica
    t={}; Do[Do[AppendTo[t,n^2+m^3],{n,300}],{m,300}]; t=Sort[t]; t3={}; Do[If[t[[n]]==t[[n+2]]&&PrimeQ[t[[n]]],AppendTo[t3,t[[n]]]],{n,Length[t]-2}]; t3; f1[l_]:=Module[{t={}},Do[If[l[[n]]!=l[[n+1]],AppendTo[t,l[[n]]]],{n,Length[l]-1}];t]; (*ExtractSingleTermsOnly*) f1[t3] (* or *)
    mx = 10^6; First /@ Sort@ Select[ Tally[ Join @@ Reap[(Sow@ Select[#^3 + Range[ Sqrt[mx - #^3]]^2, PrimeQ]) & /@ Range[mx^(1/3)]][[2, 1]]], #[[2]]>2 &] (* faster, Giovanni Resta, Mar 21 2017 *)

Extensions

More terms from Robert Israel, Mar 21 2017