A162930 Primes that can be written as a sum of a positive square and a positive cube in more than one way.
17, 89, 233, 449, 577, 593, 1289, 1367, 1601, 1753, 2089, 2521, 3391, 4481, 4721, 5953, 6121, 6427, 7057, 7577, 8081, 9649, 10313, 10657, 10729, 11969, 12329, 13121, 13457, 15137, 15193, 15641, 15661, 16033, 16649, 18523, 21673, 21961, 23201
Offset: 1
Keywords
Examples
The prime 17 can be written 1^3 + 4^2 as well as 2^3 + 3^2.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10808 (first 500 terms from Seiichi Manyama, terms <= 8*10^7)
Programs
-
Maple
isA162930 := proc(n) if isprime(n) then wa := 0 ; for y from 1 to n/2 do if issqr(n-y^3) then if n -y^3 > 0 then wa := wa+1 ; fi; fi; od: RETURN( wa>1) ; else false; fi; end: for i from 1 to 2700 do if isA162930 ( ithprime(i)) then printf("%d,",ithprime(i)) ; fi; od: # R. J. Mathar, Jul 21 2009
-
Mathematica
lst={};Do[Do[AppendTo[lst,n^2+m^3],{n,2*5!}],{m,2*5!}];lst=Sort[lst]; lst2={};Do[If[lst[[n]]==lst[[n+1]]&&PrimeQ[lst[[n]]],AppendTo[lst2, lst[[n]]]],{n,Length[lst]-1}];lst2;
-
PARI
upto(n) = {my(res = List(), v = vector(n), i, j, i2); for(i = 1, sqrtint(n), i2 = i^2; for(j = 1, sqrtnint(n - i^2, 3), v[i2 + j^3]++)); forprime(p = 2, n, if(v[p] > 1, listput(res, p))); kill(v); res} \\ David A. Corneth, Jun 20 2023
Extensions
Slightly edited by R. J. Mathar, Jul 21 2009
Comments