cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206625 Expansion of x * (1 + x) * (1 - x^2) * (1 + x^3) / (1 - 2*x^2 - 2*x^4 - 2*x^6 + x^8) in powers of x.

Original entry on oeis.org

0, 1, 1, 1, 2, 5, 5, 13, 16, 37, 45, 109, 130, 313, 377, 905, 1088, 2617, 3145, 7561, 9090, 21853, 26269, 63157, 75920, 182525, 219413, 527509, 634114, 1524529, 1832625, 4405969, 5296384, 12733489, 15306833, 36800465, 44237570, 106355317
Offset: 0

Views

Author

Michael Somos, Feb 10 2012

Keywords

Comments

This is a divisibility sequence; that is, if n divides m, then a(n) divides a(m).

Examples

			G.f. = x + x^2 + x^3 + 2*x^4 + 5*x^5 + 5*x^6 + 13*x^7 + 16*x^8 + 37*x^9 + ...
		

References

  • J. A. Sjogren, Cycles and spanning trees. Math. Comput. Modelling 15, No.9, 87-102 (1991).

Crossrefs

Cf. A071100 (bisection), A071101 (bisection), A112835, A138573.

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(1+x)*(1-x^2)*(1+x^3)/(1-2*x^2-2*x^4-2*x^6+x^8 ))); // G. C. Greubel, Aug 12 2018
  • Mathematica
    CoefficientList[Series[x*(1+x)*(1-x^2)*(1+x^3)/(1-2*x^2-2*x^4-2*x^6+x^8 ), {x, 0, 50}], x] (* G. C. Greubel, Aug 12 2018 *)
  • PARI
    {a(n) = my(m = abs(n)); polcoeff( x * (1 + x) * (1 - x^2) * (1 + x^3) / (1 - 2*x^2 - 2*x^4 - 2*x^6 + x^8) + x * O(x^m), m)};
    
  • PARI
    {a(n) = my(m = abs(n), v); v = polroots( Pol([ 1, 2, 4, 2, 1])); sqrtint( round( prod( k=1, 4, v[k]^m - 1, 2^(m%2) / 20)))};
    

Formula

G.f.: x * (1 + x) * (1 - x^2) * (1 + x^3) / (1 - 2*x^2 - 2*x^4 - 2*x^6 + x^8).
a(n) = a(-n) = 2*a(n-2) + 2*a(n-4) + 2*a(n-6) - a(n-8) for all n in Z.
a(2*n + 5) = A071100(n). a(2*n + 6) = A071101(n). a(n + 3) = A112835(n). a(2*n) = A138573(n).