A206738 G.f.: 1/(1 - x^2/(1 - x^5/(1 - x^8/(1 - x^11/(1 - x^14/(1 - x^17/(1 -...- x^(3*n-1)/(1 -...)))))))), a continued fraction.
1, 0, 1, 0, 1, 0, 1, 1, 1, 2, 1, 3, 2, 4, 4, 6, 7, 9, 11, 14, 18, 22, 29, 35, 46, 56, 73, 90, 116, 144, 184, 231, 292, 370, 465, 591, 742, 942, 1185, 1502, 1893, 2395, 3023, 3819, 4826, 6093, 7702, 9724, 12290, 15519, 19611, 24767, 31294, 39527, 49937, 63082
Offset: 0
Examples
G.f.: A(x) = 1 + x^2 + x^4 + x^6 + x^7 + x^8 + 2*x^9 + x^10 + 3*x^11 + ... Simple continued fraction expansions: A(1/2) = 1.34788543155288690684 ... = [1; 2, 1, 6, 1, 30, 1, 62, 1, 254, 1, 510, 1, 2046, 1, 4094, 1, ...] and A(-1/2) = 1.3199498363818812865 ... = [1; 3, 7, 1, 31, 63, 1, 255, 511, 1, 2047, 4095, 1, ...]. - _Peter Bala_, Dec 15 2015
Links
- Robert Israel, Table of n, a(n) for n = 0..2000
Programs
-
Maple
N:= 100: C:= [0,[1,1],seq([-x^i,1],i=2..N,3)]: S:= series(numtheory:-cfrac(C),x,N+1): seq(coeff(S,x,j),j=0..N); # Robert Israel, Feb 18 2024
-
Mathematica
nmax = 60; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[x^(3*Range[nmax + 1]-1)]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2017 *)
-
PARI
{a(n)=local(CF=1+x*O(x^n),M=sqrtint(n+1)); for(k=0, M, CF=1/(1-x^(3*M-3*k+2)*CF)); polcoeff(CF, n, x)} for(n=0,55,print1(a(n),", "))
Formula
a(n) ~ c * d^n, where d = 1.26326802855134275222... and c = 0.16506173508242936... - Vaclav Kotesovec, Aug 25 2017
From Peter Bala, Jul 03 2019: (Start)
O.g.f. as a ratio of q series: N(q)/D(q), where N(q) = Sum_{n >= 0} (-1)^n*q^(3*n^2+2*n)/((1-q^3)*(1-q^6)*...*(1-q^(3*n))) and D(q) = Sum_{n >= 0} (-1)^n*q^(3*n^2-n)/((1-q^3)*(1-q^6)*...*(1-q^(3*n))). Cf. A143951, A224704 and A206737.
D(q) has a simple real zero at x = 0.79159764784576529644 .... The constants c and d quoted in the above asymptotic approximation are given by d = 1/x and c = - N(x)/(x*D'(x)), where the prime indicates differentiation w.r.t. q. (End)
Comments