A206740 G.f.: 1/(1 - x/(1 - x^3/(1 - x^6/(1 - x^10/(1 - x^15/(1 - x^21/(1 -...- x^(n*(n+1)/2)/(1 -...))))))), a continued fraction.
1, 1, 1, 1, 2, 3, 4, 6, 9, 13, 20, 30, 44, 66, 99, 147, 220, 329, 490, 732, 1095, 1634, 2440, 3646, 5444, 8130, 12146, 18139, 27089, 40463, 60434, 90258, 134811, 201349, 300721, 449153, 670844, 1001939, 1496467, 2235080, 3338227, 4985868, 7446739, 11122179
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 6*x^7 + 9*x^8 +...
Crossrefs
Cf. A206739.
Programs
-
Mathematica
nmax = 50; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[x^(Range[nmax + 1]*(Range[nmax + 1] + 1)/2)]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 24 2017 *)
-
PARI
{a(n)=local(CF=1+x*O(x^n),M=sqrtint(n+1)); for(k=0, M, CF=1/(1-x^((M-k+1)*(M-k+2)/2)*CF)); polcoeff(CF, n, x)} for(n=0,55,print1(a(n),", "))
Formula
G.f.: 1/Q(0) , where Q(k) = 1 - x^((2*k+1)*(2*k+2)/2)/(1 - x^((2*k+2)*(2*k+3)/2)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Sep 10 2013
a(n) ~ c * d^n, where d = 1.49356638691558702616975760297981328... and c = 0.35853801643147450974166770910994348... - Vaclav Kotesovec, Aug 24 2017