cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206740 G.f.: 1/(1 - x/(1 - x^3/(1 - x^6/(1 - x^10/(1 - x^15/(1 - x^21/(1 -...- x^(n*(n+1)/2)/(1 -...))))))), a continued fraction.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 6, 9, 13, 20, 30, 44, 66, 99, 147, 220, 329, 490, 732, 1095, 1634, 2440, 3646, 5444, 8130, 12146, 18139, 27089, 40463, 60434, 90258, 134811, 201349, 300721, 449153, 670844, 1001939, 1496467, 2235080, 3338227, 4985868, 7446739, 11122179
Offset: 0

Views

Author

Paul D. Hanna, Feb 12 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 6*x^7 + 9*x^8 +...
		

Crossrefs

Cf. A206739.

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[x^(Range[nmax + 1]*(Range[nmax + 1] + 1)/2)]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 24 2017 *)
  • PARI
    {a(n)=local(CF=1+x*O(x^n),M=sqrtint(n+1)); for(k=0, M, CF=1/(1-x^((M-k+1)*(M-k+2)/2)*CF)); polcoeff(CF, n, x)}
    for(n=0,55,print1(a(n),", "))

Formula

G.f.: 1/Q(0) , where Q(k) = 1 - x^((2*k+1)*(2*k+2)/2)/(1 - x^((2*k+2)*(2*k+3)/2)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Sep 10 2013
a(n) ~ c * d^n, where d = 1.49356638691558702616975760297981328... and c = 0.35853801643147450974166770910994348... - Vaclav Kotesovec, Aug 24 2017