cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A206739 G.f.: 1/(1 - x/(1 - x^4/(1 - x^9/(1 - x^16/(1 - x^25/(1 - x^36/(1 -...- x^(n^2)/(1 -...))))))), a continued fraction.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 14, 19, 26, 37, 52, 72, 99, 138, 193, 269, 373, 518, 722, 1006, 1399, 1944, 2705, 3766, 5241, 7290, 10141, 14112, 19638, 27323, 38012, 52889, 73593, 102398, 142470, 198225, 275809, 383760, 533954, 742923, 1033685, 1438254
Offset: 0

Views

Author

Paul D. Hanna, Feb 12 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + x^3 + x^4 + 2*x^5 + 3*x^6 + 4*x^7 + 5*x^8 +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[x^(Range[nmax + 1]^2)]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 24 2017 *)
  • Maxima
    T(n, m):=if n=m then 1 else  sum(binomial(m, i)*T((n-m)/3, i), i, 1, (n-m)/3);
    makelist(sum(T(n,k),k,0,n),n,0,20); /* Vladimir Kruchinin, Mar 21 2015 */
  • PARI
    {a(n)=local(CF=1+x*O(x^n),M=sqrtint(n+1)); for(k=0, M, CF=1/(1-x^((M-k+1)^2)*CF)); polcoeff(CF, n, x)}
    for(n=0,55,print1(a(n),", "))
    
  • PARI
    N = 66;  q = 'q + O('q^N);
    G(k) = if(k>N, 1, 1 - q^((k+1)^2) / G(k+1) );
    gf = 1 / G(0);
    Vec(gf) \\ Joerg Arndt, Jul 06 2013
    

Formula

a(n) = sum(k=0..n, T(n,k)), where T(n, m)=sum(i=1..(n-m)/3, binomial(m, i)*T((n-m)/3,i)), T(n,n)=1. - Vladimir Kruchinin, Mar 21 2015
G.f.: A(x)=1/B(x), where B(x) is g.f. of A290975. - Seiichi Manyama, Aug 18 2017
a(n) ~ c * d^n, where d = 1.391377080590304271048017099353... and c = 0.3625537262803710555422183139... - Vaclav Kotesovec, Aug 24 2017

A285484 G.f.: 1/(1 + x/(1 + x^3/(1 + x^6/(1 + x^10/(1 + x^15/(1 + ... + x^(k*(k+1)/2)/(1 + ...))))))), a continued fraction.

Original entry on oeis.org

1, -1, 1, -1, 2, -3, 4, -6, 9, -13, 18, -26, 38, -54, 77, -111, 160, -229, 328, -472, 679, -974, 1398, -2010, 2888, -4146, 5954, -8555, 12289, -17647, 25346, -36410, 52297, -75109, 107881, -154961, 222574, -319679, 459167, -659528, 947295, -1360612, 1954295, -2807031, 4031809, -5790982
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 19 2017

Keywords

Examples

			G.f.: A(x) = 1 - x + x^2 - x^3 + 2*x^4 - 3*x^5 + 4*x^6 - 6*x^7 + 9*x^8 - 13*x^9 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 45; CoefficientList[Series[1/(1 + ContinuedFractionK[x^(k (k + 1)/2), 1, {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

a(n) ~ (-1)^n * c * d^n, where d = 1.43632929358192465555987661527... and c = 0.4856490524128736949896673... - Vaclav Kotesovec, Aug 26 2017

A295072 Expansion of 1/(1 - x/(1 - x^4/(1 - x^10/(1 - x^20/(1 - x^35/(1 - ... - x^(k*(k+1)*(k+2)/6)/(1 - ...))))))), a continued fraction.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 14, 19, 26, 36, 51, 71, 98, 135, 188, 262, 364, 504, 699, 971, 1350, 1874, 2600, 3608, 5011, 6959, 9661, 13409, 18615, 25846, 35887, 49821, 69163, 96018, 133310, 185082, 256951, 356722, 495245, 687568, 954575, 1325251, 1839865, 2554325, 3546245, 4923342
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 13 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[1/(1 + ContinuedFractionK[-x^(k (k + 1) (k + 2)/6), 1, {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: 1/(1 - x/(1 - x^4/(1 - x^10/(1 - x^20/(1 - x^35/(1 - ... - x^A000292(k)/(1 - ...))))))), a continued fraction.
a(n) ~ c * d^n, where d = 1.388323040709674097023351236945145477752521994116275726548400298175286... and c = 0.369600335108282885310522776855743258910315692223280044555536918225... - Vaclav Kotesovec, Sep 18 2021

A290976 Expansion of 1 - x/(1 - x^3/(1 - x^6/(1 - x^10/(1 - x^15/(1 - x^21/(1 - ... - x^(n*(n+1)/2)/(1 - ...))))))), a continued fraction.

Original entry on oeis.org

1, -1, 0, 0, -1, 0, 0, -1, 0, 0, -2, 0, 0, -3, 0, 0, -5, 0, 0, -8, -1, 0, -13, -2, 0, -21, -5, 0, -34, -10, -1, -55, -20, -2, -89, -39, -6, -144, -73, -13, -234, -135, -29, -379, -245, -62, -617, -440, -126, -1003, -784, -253, -1636, -1383, -494, -2673, -2429, -952
Offset: 0

Views

Author

Seiichi Manyama, Aug 16 2017

Keywords

Examples

			G.f. = 1 - x - x^4 - x^7 - 2*x^10 - 3*x^13 - 5*x^16 - 8*x^19 - ...
		

Crossrefs

Cf. A206740.

Formula

Convolution inverse of A206740.
Showing 1-4 of 4 results.