A206741 G.f.: 1/(1 - x/(1 - x/(1 - x^2/(1 - x^3/(1 - x^5/(1 - x^8/(1 -...- x^Fibonacci(n)/(1 -...)))))))), a continued fraction.
1, 1, 2, 4, 9, 20, 45, 102, 231, 524, 1189, 2698, 6124, 13900, 31551, 71618, 162566, 369013, 837633, 1901368, 4315978, 9796979, 22238489, 50479892, 114585999, 260102617, 590415686, 1340204451, 3042175244, 6905536091, 15675109089, 35581458383, 80767551510
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 20*x^5 + 45*x^6 + 102*x^7 +...
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..500
Programs
-
Mathematica
nmax = 50; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[x^(Fibonacci[Range[nmax + 1]])]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2017 *)
-
PARI
{a(n)=local(CF=1+x*O(x^n),M=ceil(log(n+1)/log(1.6))); for(k=0, M, CF=1/(1-x^fibonacci(M-k+1)*CF)); polcoeff(CF, n, x)} for(n=0,50,print1(a(n),", "))
Formula
a(n) ~ c * d^n, where d = 2.2699337019511296354569330617166782764872939098477919669570757033487700138... and c = 0.3272015736512679060779796519077970622372291004190408455581585307453... - Vaclav Kotesovec, Aug 25 2017