A206742 G.f.: 1/(1 - x/(1 - x^3/(1 - x^4/(1 - x^7/(1 - x^11/(1 - x^18/(1 -...- x^Lucas(n)/(1 -...)))))))), a continued fraction.
1, 1, 1, 1, 2, 3, 4, 6, 10, 15, 22, 34, 53, 80, 121, 187, 287, 436, 666, 1023, 1564, 2386, 3652, 5593, 8548, 13065, 19995, 30590, 46767, 71524, 109425, 167361, 255934, 391466, 598795, 915805, 1400649, 2142358, 3276767, 5011632, 7665186, 11724011, 17931702, 27426003
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 6*x^7 + 10*x^8 +...
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..500
Crossrefs
Cf. A206741.
Programs
-
Mathematica
nmax = 50; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[x^(LucasL[Range[nmax + 1]])]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2017 *)
-
PARI
{Lucas(n)=polcoeff(x*(1+2*x)/(1-x-x^2+x*O(x^n)),n)} {a(n)=local(CF=1+x*O(x^n),M=ceil(log(n+1)/log(1.6))); for(k=0, M, CF=1/(1-x^Lucas(M-k+1)*CF)); polcoeff(CF, n, x)} for(n=0,55,print1(a(n),", "))
Formula
a(n) ~ c * d^n, where d = 1.52948673740109160123259225872298170871226757805081837... and c = 0.3181991399535991335364627230448471420031275308618... - Vaclav Kotesovec, Aug 25 2017
Comments