cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A274142 Number of integers in n-th generation of tree T(1/2) defined in Comments.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 5, 8, 11, 17, 25, 37, 54, 81, 119, 177, 261, 388, 574, 851, 1260, 1868, 2767, 4101, 6077, 9006, 13347, 19781, 29315, 43448, 64392, 95436, 141444, 209636, 310705, 460501, 682519, 1011581, 1499295, 2222155, 3293534, 4881472, 7235018, 10723311, 15893460, 23556367, 34913897, 51747400
Offset: 0

Views

Author

Clark Kimberling, Jun 11 2016

Keywords

Comments

Let T* be the infinite tree with root 0 generated by these rules: if p is in T*, then p+1 is in T* and x*p is in T*. Let g(n) be the set of nodes in the n-th generation, so that g(0) = {0}, g(1) = {1}, g(2) = {2,x}, g(3) = {3,2x,x+1,x^2}, etc. Let T(r) be the tree obtained by substituting r for x.
Guide to related sequences:
r sequence
-1/2 A274147
-1/3 A274148
-1/4 A274149
-2/3 A274150
-3/4 A274151
-3/2 A274154
-5/2 A274155
2^(1/2) A000045 (Fibonacci numbers)
2^(1/3) A000930
2^(1/4) A003269
2^(-1/2) A274156
3^(-1/2) A274157
2^(-1/3) A274158
3^(-1/3) A274159
(-1+3i)/2 A274168

Examples

			If r = 1/2, then g(3) = {3,2r,r+1, r^2}, in which the integers are 3 and 1, so that a(3) = 2.
		

Crossrefs

Programs

  • Mathematica
    z = 18; t = Join[{{0}}, Expand[NestList[DeleteDuplicates[Flatten[Map[{# + 1, x*#} &, #], 1]] &, {1}, z]]];
    u = Table[t[[k]] /. x -> 1/2, {k, 1, z}];
    Table[Count[Map[IntegerQ, u[[k]]], True], {k, 1, z}]
    (* second program: *)
    T[0] = {0}; T[n_] := T[n] = Complement[Join[T[n-1]+1, x*T[n-1]], T[n-1]]; Reap[For[n = 0, n <= 25, n++, cnt = Count[T[n] /. x -> 1/2, Integer]; Print[n, " ", cnt]; Sow[cnt]]][[2, 1]] (* _Jean-François Alcover, Jun 14 2016 *)

Extensions

More terms from Jean-François Alcover, Jun 14 2016
More terms from Kenny Lau, Jul 04 2016

A206741 G.f.: 1/(1 - x/(1 - x/(1 - x^2/(1 - x^3/(1 - x^5/(1 - x^8/(1 -...- x^Fibonacci(n)/(1 -...)))))))), a continued fraction.

Original entry on oeis.org

1, 1, 2, 4, 9, 20, 45, 102, 231, 524, 1189, 2698, 6124, 13900, 31551, 71618, 162566, 369013, 837633, 1901368, 4315978, 9796979, 22238489, 50479892, 114585999, 260102617, 590415686, 1340204451, 3042175244, 6905536091, 15675109089, 35581458383, 80767551510
Offset: 0

Views

Author

Paul D. Hanna, Feb 12 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 20*x^5 + 45*x^6 + 102*x^7 +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[x^(Fibonacci[Range[nmax + 1]])]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2017 *)
  • PARI
    {a(n)=local(CF=1+x*O(x^n),M=ceil(log(n+1)/log(1.6))); for(k=0, M, CF=1/(1-x^fibonacci(M-k+1)*CF)); polcoeff(CF, n, x)}
    for(n=0,50,print1(a(n),", "))

Formula

a(n) ~ c * d^n, where d = 2.2699337019511296354569330617166782764872939098477919669570757033487700138... and c = 0.3272015736512679060779796519077970622372291004190408455581585307453... - Vaclav Kotesovec, Aug 25 2017

A285407 G.f.: 1/(1 - x^2/(1 - x^3/(1 - x^5/(1 - x^7/(1 - x^11/(1 - ... - x^prime(k)/(1 - ... ))))))), a continued fraction.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 2, 2, 3, 5, 5, 9, 11, 15, 23, 28, 43, 57, 78, 113, 149, 214, 293, 403, 569, 774, 1086, 1502, 2072, 2896, 3986, 5548, 7691, 10636, 14797, 20459, 28400, 39386, 54542, 75724, 104886, 145468, 201733, 279545, 387786, 537472, 745233, 1033383, 1432415, 1986394
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 18 2017

Keywords

Examples

			G.f.: A(x) = 1 + x^2 + x^4 + x^5 + x^6 + 2*x^7 + 2*x^8 + 3*x^9 + 5*x^10 + ...
		

Crossrefs

Programs

  • Maple
    R:= 1:
    for i from numtheory:-pi(50) to 1 by -1 do
      R:= series(1-x^ithprime(i)/R, x, 51);
    od:
    R:= series(1/R, x, 51):
    seq(coeff(R,x,j),j=0..50); # Robert Israel, Apr 20 2017
  • Mathematica
    nmax = 50; CoefficientList[Series[1/(1 + ContinuedFractionK[-x^Prime[k], 1, {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

a(n) ~ c * d^n, where d = 1.3864622092472465020397266918102624708859968795203700659786636158522760956... and c = 0.15945087310540003725148530084775272562567007586487061850065597143186... - Vaclav Kotesovec, Aug 25 2017

A294922 Expansion of 1/(1 + x/(1 + x^3/(1 + x^4/(1 + x^7/(1 + x^11/(1 + ... + x^Lucas(k)/(1 + ...))))))), a continued fraction.

Original entry on oeis.org

1, -1, 1, -1, 2, -3, 4, -6, 8, -11, 16, -22, 31, -44, 61, -85, 119, -166, 232, -325, 454, -634, 886, -1237, 1728, -2415, 3373, -4712, 6583, -9194, 12843, -17941, 25060, -35006, 48899, -68303, 95409, -133272, 186159, -260036, 363230, -507373, 708720, -989969, 1382827, -1931590
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 16 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 45; CoefficientList[Series[1/(1 + ContinuedFractionK[x^LucasL[k], 1, {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: 1/(1 + x/(1 + x^3/(1 + x^4/(1 + x^7/(1 + x^11/(1 + ... + x^A000204(k)/(1 + ...))))))), a continued fraction.
Showing 1-4 of 4 results.