cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206743 G.f.: 1/(1 - x/(1 - x^2/(1 - x^5/(1 - x^12/(1 - x^29/(1 - x^70/(1 -...- x^Pell(n)/(1 -...)))))))), a continued fraction.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 8, 13, 22, 36, 60, 99, 164, 272, 450, 746, 1235, 2046, 3389, 5613, 9299, 15402, 25514, 42262, 70005, 115962, 192084, 318182, 527053, 873043, 1446161, 2395504, 3968060, 6572925, 10887788, 18035177, 29874537, 49485965, 81971484, 135782448
Offset: 0

Views

Author

Paul D. Hanna, Feb 12 2012

Keywords

Comments

From Clark Kimberling, Jun 12 2016: (Start)
Number of real integers in n-th generation of tree T(2i) defined as follows.
Let T* be the infinite tree with root 0 generated by these rules: if p is in T*, then p+1 is in T* and x*p is in T*. Let g(n) be the set of nodes in the n-th generation, so that g(0) = {0}, g(1) = {1}, g(2) = {2,x}, g(3) = {3,2x,x+1,x^2}, etc. Let T(r) be the tree obtained by substituting r for x.
For r = 2i, then g(3) = {3,2r,r+1, r^2}, in which the number of real integers is a(3) = 2.
See A274142 for a guide to related sequences. (End)

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 5*x^5 + 8*x^6 + 13*x^7 +...
		

Crossrefs

Programs

  • Maple
    A206743 := proc(r)
    local gs,n,gs2,el,a ;
    gs := [2,r] ;
    for n from 3 do
    gs2 := [] ;
    for el in gs do
    gs2 := [op(gs2),el+1,r*el] ;
    end do:
    gs := gs2 ;
    a := 0 ;
    for el in gs do
    if type(el,'realcons') then
    a := a+1 :
    end if;
    end do:
    print(n,a) ;
    end do:
    end proc: # R. J. Mathar, Jun 16 2016
  • Mathematica
    z = 18; t = Join[{{0}}, Expand[NestList[DeleteDuplicates[Flatten[Map[{# + 1, x*#} &, #], 1]] &, {1}, z]]]; u = Table[t[[k]] /. x -> 2 I, {k, 1, z}]; Table[Count[Map[IntegerQ, u[[k]]], True], {k, 1, z}] (* Clark Kimberling, Jun 12 2016 *)
  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)}
    {a(n)=local(CF=1+x*O(x^n),M=ceil(log(2*n+1)/log(2.4))); for(k=0, M, CF=1/(1-x^Pell(M-k+1)*CF)); polcoeff(CF, n, x)}
    for(n=0,55,print1(a(n),", "))
    
  • Python
    N = 1000
    pell = [0,1]
    c = 2
    while c < N:
        pell.append(c)
        c = pell[-1]*2 + pell[-2]
    pell.reverse()
    gf = [0]*(N+1)
    for p in pell:
        gf = [-x for x in gf]
        gf[0] += 1
        quotient = [0]*(N+1)
        remainder = [0]*(N+1)
        remainder[p] = 1
        for n in range(N+1):
            q = remainder[n]//gf[0]
            for i in range(n,N+1):
                remainder[i] -= q*gf[i-n]
            quotient[n] = q
        gf = quotient
    for i in range(N+1):
        print(i,gf[i])
    # Kenny Lau, Aug 01 2017

Formula

a(n) ~ c * d^n, where d = 1.6564594309887754808836889708489581749625897572527517021957723319642053908... and c = 0.3844078703275069072126260832303344589497793302955451672191630264983... - Vaclav Kotesovec, Aug 25 2017