cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206771 0 followed by the numerators of the reduced (A001803(n) + A001790(n)) / (2*A046161(n)).

Original entry on oeis.org

0, 1, 1, 9, 5, 175, 189, 1617, 429, 57915, 60775, 508079, 264537, 8788507, 9100525, 75218625, 9694845, 5109183315, 5250613995, 43106892675, 22090789875, 723694276305, 740104577355, 6049284520695, 1543768261425, 201547523019375
Offset: 0

Views

Author

Paul Curtz, Jan 10 2013

Keywords

Comments

We write the fractions a(n)/b(n) and higher order differences as a matrix:
0, 1, 1, 9/8, 5/4,...
1, 0, 1/8, 1/8, 15/128,... = (A001790(n)/A046161(n) +Lorbeta(n)) /2
-1, 1/8, 0, -1/128, -1/128,... = (Lorbeta(n+1) +A161200(n+1)/A046161(n+1)) / 2
9/8, -1/8, -1/128, 0, 1/1024,...
-5/4, 15/128, 1/128, 1/1024, 0,...
Here, Lorbeta(0)=1 and Lorbeta(n) = -A098597(n-1)/A046161(n) for n>0 is the inverse of the Lorentz factor.
The first line with numerators a(n) and denominators b(n) is 0, 1, 1, 9/8, 5/4, 175/128, 189/128, 1617/1024, 429/256, 57915/32768, 60775/32768,... It is an autosequence: Its inverse binomial transform is the signed sequence.
a(n+1)/(2*n-1)= 1, 3, 1, 25, 21, 147, 33, 3861, 3575, 26741,... .
a(n+1)/A146535(n) = 9, 5, 35, 27, 539, 39, 4455,... .
A001790(n)/A046161(n) yields the coefficients of the Lorentz factor (or Lorentz gamma factor). With b for beta and g for gamma:
g = (1-b^2)^-1 = 1 + (b^2)/2 + 3*(b^4)/8 + 5*(b^6)/16 + ... .
b = (1-g^-2)^-1 = 1 - (g^-2)/2 - (g^-4)/8 - (g^-6)/16 - ... .
Are the denominators of the first subdiagonal 1, 1/8, -1/128, 1/1024,... A061549(n) ?
a(n+1)/(A000108(n)*b(n)) = 1, 1, 9/16, 1/4, 25/256, 9/256, 49/4096, 1/256, 81/65536, 25/65536, 121/1048576,... = A191871(n+1)/ A084623(n+1)^2 ?

Examples

			From the first formula: a(1)=1*1, a(2)=1*1, a(3)=3*3, a(4)=1*5, a(5)=5*35, a(6)=3*63.
		

Crossrefs

Programs

  • Magma
    /* By definition: */ m:=25; R:=PowerSeriesRing(Rationals(), m); p:=Coefficients(R!(1/(1-x)^(1/2))); q:=Coefficients(R!((1-x)^(-3/2))); A001790:=[Numerator(p[i]): i in [1..m]]; A001803:=[Numerator(q[i]): i in [1..m]]; A046161:=[Denominator(Binomial(2*n,n)/4^n): n in [0..m-1]]; [0] cat [Numerator((A001803[n]+A001790[n])/(2*A046161[n])): n in [1..m]]; // Bruno Berselli, Mar 11 2013
  • Maple
    A206771 := proc(n)
            A001790(n)+A001803(n) ;
            %/2/A046161(n) ;
            numer(%) ;
    end proc: # R. J. Mathar, Jan 18 2013
  • Mathematica
    max = 25; A001803 = CoefficientList[Series[(1 - x)^(-3/2), {x, 0, max}], x] // Numerator; A001790 = CoefficientList[Series[1/Sqrt[(1 - x)], {x, 0, max}], x] // Numerator; A046161 = Table[Binomial[2n, n]/4^n, {n, 0, max}] // Denominator; a[n_] := (A001803[[n]] + A001790[[n]])/(2*A046161[[n]]) // Numerator; a[0] = 0; Table[a[n], {n, 0, max}]
    (* or (from 1st formula) : *) Table[ n*Numerator[4^(1-n)*Binomial[2n-2, n-1]]/2^IntegerExponent[n, 2], {n, 0, max}]
    (* or (from 2nd formula) : *) Table[ Numerator[ CatalanNumber[n-1]/2^(2n-1)]*Numerator[n^2/2^n], {n, 0, max}] (* Jean-François Alcover, Jan 31 2013 *)

Formula

a(n) = A000265(n) * A001790(n-1).
a(n) = A098597(n-1) * A191871(n). See also A181318
a(n) = numerator of n*binomial(2n-2,n-1)/4^(n-1). - Nathaniel Johnston, Dec 16 2022

Extensions

a(11)-a(25) from Jean-François Alcover, Jan 13 2013