A206771 0 followed by the numerators of the reduced (A001803(n) + A001790(n)) / (2*A046161(n)).
0, 1, 1, 9, 5, 175, 189, 1617, 429, 57915, 60775, 508079, 264537, 8788507, 9100525, 75218625, 9694845, 5109183315, 5250613995, 43106892675, 22090789875, 723694276305, 740104577355, 6049284520695, 1543768261425, 201547523019375
Offset: 0
Examples
From the first formula: a(1)=1*1, a(2)=1*1, a(3)=3*3, a(4)=1*5, a(5)=5*35, a(6)=3*63.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- OEIS Wiki, Autosequence
- Wikipedia, Lorentz Factor.
Programs
-
Magma
/* By definition: */ m:=25; R
:=PowerSeriesRing(Rationals(), m); p:=Coefficients(R!(1/(1-x)^(1/2))); q:=Coefficients(R!((1-x)^(-3/2))); A001790:=[Numerator(p[i]): i in [1..m]]; A001803:=[Numerator(q[i]): i in [1..m]]; A046161:=[Denominator(Binomial(2*n,n)/4^n): n in [0..m-1]]; [0] cat [Numerator((A001803[n]+A001790[n])/(2*A046161[n])): n in [1..m]]; // Bruno Berselli, Mar 11 2013 -
Maple
A206771 := proc(n) A001790(n)+A001803(n) ; %/2/A046161(n) ; numer(%) ; end proc: # R. J. Mathar, Jan 18 2013
-
Mathematica
max = 25; A001803 = CoefficientList[Series[(1 - x)^(-3/2), {x, 0, max}], x] // Numerator; A001790 = CoefficientList[Series[1/Sqrt[(1 - x)], {x, 0, max}], x] // Numerator; A046161 = Table[Binomial[2n, n]/4^n, {n, 0, max}] // Denominator; a[n_] := (A001803[[n]] + A001790[[n]])/(2*A046161[[n]]) // Numerator; a[0] = 0; Table[a[n], {n, 0, max}] (* or (from 1st formula) : *) Table[ n*Numerator[4^(1-n)*Binomial[2n-2, n-1]]/2^IntegerExponent[n, 2], {n, 0, max}] (* or (from 2nd formula) : *) Table[ Numerator[ CatalanNumber[n-1]/2^(2n-1)]*Numerator[n^2/2^n], {n, 0, max}] (* Jean-François Alcover, Jan 31 2013 *)
Formula
Extensions
a(11)-a(25) from Jean-François Alcover, Jan 13 2013
Comments