cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206807 Position of 3^n when {2^j} and {3^k} are jointly ranked; complement of A206805.

Original entry on oeis.org

2, 5, 7, 10, 12, 15, 18, 20, 23, 25, 28, 31, 33, 36, 38, 41, 43, 46, 49, 51, 54, 56, 59, 62, 64, 67, 69, 72, 74, 77, 80, 82, 85, 87, 90, 93, 95, 98, 100, 103, 105, 108, 111, 113, 116, 118, 121, 124, 126, 129, 131, 134, 137, 139, 142, 144, 147, 149, 152, 155
Offset: 1

Views

Author

Clark Kimberling, Feb 16 2012

Keywords

Comments

The joint ranking is for j >= 1 and k >= 1, so that the sets {2^j} and {3^k} are disjoint.

Examples

			The joint ranking begins with 2,3,4,8,9,16,27,32,64,81,128,243,256, so that
A206805 = (1,3,4,6,8,9,11,13,...)
A206807 = (2,5,7,10,12,...)
		

Crossrefs

Programs

  • Mathematica
    f[n_] := 2^n; g[n_] := 3^n; z = 200;
    c = Table[f[n], {n, 1, z}]; s = Table[g[n], {n, 1, z}];
    j = Sort[Union[c, s]];
    p[n_] := Position[j, f[n]]; q[n_] := Position[j, g[n]];
    Flatten[Table[p[n], {n, 1, z}]]           (* A206805 *)
    Table[n + Floor[n*Log[3, 2]], {n, 1, 50}] (* A206805 *)
    Flatten[Table[q[n], {n, 1, z}]]           (* this sequence *)
    Table[n + Floor[n*Log[2, 3]], {n, 1, 50}] (* this sequence as a table *)
  • PARI
    a(n) = logint(3^n, 2) + n; \\ Ruud H.G. van Tol, Dec 10 2023

Formula

a(n) = n + floor(n*log_2(3)).
A206805(n) = n + floor(n*log_3(2)).
a(n) = n + A056576(n). - Michel Marcus, Dec 12 2023
a(n) = A098294(n) + 2*n - 1. - Ruud H.G. van Tol, Jan 22 2024