A206807 Position of 3^n when {2^j} and {3^k} are jointly ranked; complement of A206805.
2, 5, 7, 10, 12, 15, 18, 20, 23, 25, 28, 31, 33, 36, 38, 41, 43, 46, 49, 51, 54, 56, 59, 62, 64, 67, 69, 72, 74, 77, 80, 82, 85, 87, 90, 93, 95, 98, 100, 103, 105, 108, 111, 113, 116, 118, 121, 124, 126, 129, 131, 134, 137, 139, 142, 144, 147, 149, 152, 155
Offset: 1
Keywords
Examples
The joint ranking begins with 2,3,4,8,9,16,27,32,64,81,128,243,256, so that A206805 = (1,3,4,6,8,9,11,13,...) A206807 = (2,5,7,10,12,...)
Programs
-
Mathematica
f[n_] := 2^n; g[n_] := 3^n; z = 200; c = Table[f[n], {n, 1, z}]; s = Table[g[n], {n, 1, z}]; j = Sort[Union[c, s]]; p[n_] := Position[j, f[n]]; q[n_] := Position[j, g[n]]; Flatten[Table[p[n], {n, 1, z}]] (* A206805 *) Table[n + Floor[n*Log[3, 2]], {n, 1, 50}] (* A206805 *) Flatten[Table[q[n], {n, 1, z}]] (* this sequence *) Table[n + Floor[n*Log[2, 3]], {n, 1, 50}] (* this sequence as a table *)
-
PARI
a(n) = logint(3^n, 2) + n; \\ Ruud H.G. van Tol, Dec 10 2023
Formula
a(n) = n + floor(n*log_2(3)).
A206805(n) = n + floor(n*log_3(2)).
a(n) = n + A056576(n). - Michel Marcus, Dec 12 2023
a(n) = A098294(n) + 2*n - 1. - Ruud H.G. van Tol, Jan 22 2024
Comments