cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206808 Sum_{0

Original entry on oeis.org

7, 45, 156, 400, 855, 1617, 2800, 4536, 6975, 10285, 14652, 20280, 27391, 36225, 47040, 60112, 75735, 94221, 115900, 141120, 170247, 203665, 241776, 285000, 333775, 388557, 449820, 518056, 593775, 677505, 769792, 871200, 982311
Offset: 2

Views

Author

Clark Kimberling, Feb 15 2012

Keywords

Comments

a(n) = n^4-p(n), where p(n) is the n-th partial sum of (j^3).
a(n) = t(n)-t(n-1), where t = A206809.
For a guide to related sequences, see A206817.

Examples

			a(2) = 2^3-1^3 = 7.
a(3) = (3^3-1^3) + (3^3-2^3) = 45.
		

Crossrefs

Programs

  • Mathematica
    s[k_] := k^3; t[1] = 0;
    p[n_] := Sum[s[k], {k, 1, n}];
    c[n_] := n*s[n] - p[n];
    t[n_] := t[n - 1] + (n - 1) s[n] - p[n - 1]
    Table[c[n], {n, 2, 50}]  (* A206808 *)
    Flatten[Table[t[n], {n, 2, 35}]]  (* A206809 *)
  • PARI
    vector(100, n, (3*n^4+10*n^3+11*n^2+4*n)/4) \\ Colin Barker, Jul 11 2014
    
  • PARI
    Vec(-x^2*(x^2+10*x+7)/(x-1)^5 + O(x^100)) \\ Colin Barker, Jul 11 2014
    
  • Sage
    [sum([n^3-j^3 for j in range(1,n)]) for n in range(2,35)] # Danny Rorabaugh, Apr 18 2015

Formula

a(n) = (3*n^4-2*n^3-n^2)/4. G.f.: -x^2*(x^2+10*x+7) / (x-1)^5. - Colin Barker, Jul 11 2014