cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206823 Triangular array read by rows: T(n,k) is the number of functions f:{1,2,...,n}->{1,2,...,n} with exactly k elements x such that |f^(-1)(x)| = 1; n>=0, 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 2, 0, 2, 3, 18, 0, 6, 40, 48, 144, 0, 24, 205, 1000, 600, 1200, 0, 120, 2556, 7380, 18000, 7200, 10800, 0, 720, 24409, 125244, 180810, 294000, 88200, 105840, 0, 5040, 347712, 1562176, 4007808, 3857280, 4704000, 1128960, 1128960, 0, 40320
Offset: 0

Views

Author

Geoffrey Critzer, Feb 12 2012

Keywords

Comments

Row sums = n^n, all functions f:{1,2,...,n}->{1,2,...,n}.
T(n,n)= n!, bijections on {1,2,...,n}.

Examples

			Triangle T(n,k) begins:
    1;
    0      1;
    2      0     2;
    3     18     0      6;
   40     48   144      0    24;
  205   1000   600   1200     0     120;
  ...
		

Crossrefs

Row sums give: A000312.
Column k=0 gives: A231797.
Cf. A231602.

Programs

  • Maple
    with(combinat): C:= binomial:
    b:= proc(t, i, u) option remember; `if`(t=0, 1,
          `if`(i<2, 0, b(t, i-1, u) +add(multinomial(t, t-i*j, i$j)
          *b(t-i*j, i-1, u-j)*u!/(u-j)!/j!, j=1..t/i)))
        end:
    T:= (n, k)-> C(n, k)*C(n, k)*k! *b(n-k$2, n-k):
    seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Nov 13 2013
  • Mathematica
    nn = 8; Prepend[CoefficientList[Table[n! Coefficient[Series[(Exp[x] - x + y x)^n, {x, 0, nn}], x^n], {n, 1, nn}], y], {1}] // Flatten

Formula

E.g.f.: Sum_{k=0..n} T(n,k) * y^k * x^n / n! = (exp(x) - x + y*x)^n.