A206901 Number of nonisomorphic graded posets with 0 of rank n with no 3-element antichain.
1, 2, 8, 39, 199, 1027, 5316, 27539, 142694, 739416, 3831589, 19855045, 102887673, 533158028, 2762794601, 14316644946, 74188042696, 384438233215, 1992137140383, 10323141778619, 53493935746148, 277202543857995, 1436447874880342, 7443591492820888
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Vladimir Retakh, Shirlei Serconek, and Robert Wilson, Hilbert series of algebras associated to direct graphs and order homology, arXiv 1010.6295 [math.RA], 2010-2011.
- Wikipedia, Graded poset
- Index entries for linear recurrences with constant coefficients, signature (7,-10,3).
Crossrefs
Programs
-
Mathematica
m = {{3, 3, 1, 0}, {1, 3, 0, 0}, {2, 3, 1, 0}, {6, 9, 2, 0}}; Table[MatrixPower[m, n][[4,3]], {n, 1, 40}]
-
Python
def a(n,adict={0:1,1:2,2:8}): if n in adict: return adict[n] adict[n]=7*a(n-1)-10*a(n-2)+3*a(n-3) return adict[n]
Formula
a(n+3) = 7a(n+2) - 10a(n+1) + 3a(n), a(0)=1, a(1)=2, a(2)=8.
G.f.: (1-5x+4x^2)/(1-7x+10x^2-3x^3).
Comments