cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206901 Number of nonisomorphic graded posets with 0 of rank n with no 3-element antichain.

Original entry on oeis.org

1, 2, 8, 39, 199, 1027, 5316, 27539, 142694, 739416, 3831589, 19855045, 102887673, 533158028, 2762794601, 14316644946, 74188042696, 384438233215, 1992137140383, 10323141778619, 53493935746148, 277202543857995, 1436447874880342, 7443591492820888
Offset: 0

Views

Author

David Nacin, Feb 13 2012

Keywords

Comments

We do not assume all maximal elements have maximal rank and thus use graded poset to mean: For every element x, all maximal chains among those with x as greatest element have the same finite length.

Crossrefs

Cf. A124292 (counts with unique maximal element).
Cf. A025192, A206902 (adding a uniformity condition in the sense of the Retakh et al. paper with and without maximal elements).

Programs

  • Mathematica
    m = {{3, 3, 1, 0}, {1, 3, 0, 0}, {2, 3, 1, 0}, {6, 9, 2, 0}}; Table[MatrixPower[m, n][[4,3]], {n, 1, 40}]
  • Python
    def a(n,adict={0:1,1:2,2:8}):
        if n in adict:
            return adict[n]
        adict[n]=7*a(n-1)-10*a(n-2)+3*a(n-3)
        return adict[n]

Formula

a(n+3) = 7a(n+2) - 10a(n+1) + 3a(n), a(0)=1, a(1)=2, a(2)=8.
G.f.: (1-5x+4x^2)/(1-7x+10x^2-3x^3).