A206950
Number of nonisomorphic graded posets with 0 and non-uniform Hasse graph of rank n, with no 3-element antichain.
Original entry on oeis.org
0, 0, 0, 3, 33, 259, 1762, 11093, 66592, 387264, 2202053, 12314587, 67995221, 371697914, 2015659707, 10859379024, 58190011080, 310409500291, 1649579166385, 8738000970251, 46158910515154, 243260704208613, 1279386591175904, 6716811592446952, 35209193397256085
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- V. Retakh, S. Serconek, and R. Wilson, Hilbert Series of Algebras Associated to Directed Graphs and Order Homology, arXiv:1010.6295 [math.RA], 2010-2011.
- Wikipedia, Graded poset
- Index entries for linear recurrences with constant coefficients, signature (13,-59,115,-109,51,-9).
Cf.
A206949 (unique maximal element added.)
Cf.
A206947,
A206948 (requiring exactly two elements in each rank level above 0 with and without maximal element.)
-
Join[{0},LinearRecurrence[{13, -59, 115, -109, 51, -9}, {0, 0, 3, 33, 259, 1762}, 40]]
-
def a(n,adict={0:0,1:0,2:0,3:3,4:33,5:259,6:1762}):
if n in adict:
return adict[n]
adict[n]=13*a(n-1)-59*a(n-2)+115*a(n-3)-109*a(n-4)+51*a(n-5)-9*a(n-6)
return adict[n]
A206902
Number of nonisomorphic graded posets with 0 and uniform Hasse diagram of rank n with no 3-element antichain.
Original entry on oeis.org
1, 2, 8, 36, 166, 768, 3554, 16446, 76102, 352152, 1629536, 7540458, 34892452, 161460114, 747134894, 3457265922, 15998031616, 74028732924, 342557973998, 1585140808368, 7335025230994, 33941839649382, 157061283704438, 726779900373936, 3363075935260696
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- V. Retakh, S. Serconek and R. Wilson, Hilbert Series of Algebras Associated to Directed Graphs and Order Homology, arXiv:1010.6295 [math.RA], 2010-2011.
- Wikipedia, Graded poset
- Index entries for linear recurrences with constant coefficients, signature (6,-7,3).
Cf.
A025192 (adding a unique maximal element).
Cf.
A124292,
A206901 (dropping uniformity with and without maximal element).
-
a:=[2,8,36];; for n in [4..30] do a[n]:=6*a[n-1]-7*a[n-2]+3*a[n-3]; od; Concatenation([1], a); # G. C. Greubel, May 21 2019
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-4*x +3*x^2-x^3)/(1-6*x+7*x^2-3*x^3) )); // G. C. Greubel, May 21 2019
-
LinearRecurrence[{6,-7,3}, {1,2,8,36}, 30] (* Vincenzo Librandi, Feb 27 2012 *)
-
my(x='x+O('x^30)); Vec((1-4*x+3*x^2-x^3)/(1-6*x+7*x^2-3*x^3)) \\ G. C. Greubel, May 21 2019
-
def a(n, adict={1:2,2:8,3:36}):
if n in adict:
return adict[n]
adict[n]=6*a(n-1)-7*a(n-2)+3*a(n-3)
return adict[n]
-
((1-4*x+3*x^2-x^3)/(1-6*x+7*x^2-3*x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 21 2019
A208736
Number of nonisomorphic graded posets with 0 and 1 and non-uniform Hasse graph of rank n, with exactly 2 elements of each rank level between 0 and 1.
Original entry on oeis.org
0, 0, 0, 1, 5, 22, 91, 361, 1392, 5265, 19653, 72694, 267179, 977593, 3565600, 12975457, 47142021, 171075606, 620303547, 2247803785, 8141857808, 29481675889, 106728951109, 386314552438, 1398132674955, 5059626441177, 18308871648576, 66249898660801
Offset: 0
- R. Stanley, Enumerative combinatorics. Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- V. Retakh, S. Serconek, and R. Wilson, Hilbert Series of Algebras Associated to Directed Graphs and Order Homology, arXiv:1010.6295 [math.RA], 2010-2011.
- Wikipedia, Graded poset
- Index entries for linear recurrences with constant coefficients, signature (8,-21,20,-5).
Cf.
A208737,
A206901,
A206902,
A206947-
A206950,
A001906,
A025192,
A081567,
A124302,
A124292,
A088305,
A086405,
A012781.
-
Join[{0, 0}, LinearRecurrence[{8, -21, 20, -5}, {0, 1, 5, 22}, 40]]
-
def a(n, d={0:0,1:0,2:0,3:1,4:5,5:22}):
if n in d:
return d[n]
d[n]=8*a(n-1) - 21*a(n-2) + 20*a(n-3) - 5*a(n-4)
return d[n]
A208737
Number of nonisomorphic graded posets with 0 and 1 and non-uniform Hasse graph of rank n, with no 3-element antichain.
Original entry on oeis.org
0, 0, 0, 1, 7, 37, 175, 778, 3325, 13837, 56524, 227866, 909832, 3607294, 14227447, 55894252, 218937532, 855650749, 3338323915, 13007422705, 50631143323, 196928737582, 765495534433, 2974251390529, 11552064922624, 44856304154086
Offset: 0
- R. Stanley, Enumerative combinatorics. Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- V. Retakh, S. Serconek, and R. Wilson, Hilbert Series of Algebras Associated to Directed Graphs and Order Homology, arXiv:1010.6295 [math.RA], 2010-2011.
- Wikipedia, Graded poset
- Index entries for linear recurrences with constant coefficients, signature (10,-36,57,-39,9).
Cf.
A208736,
A206901,
A206902,
A206947-
A206950,
A001906,
A025192,
A081567,
A124302,
A124292,
A088305,
A086405,
A012781.
-
Join[{0}, LinearRecurrence[{10, -36, 57, -39, 9}, {0, 0, 1, 7, 37}, 40]]
-
def a(n, d={0:0,1:0,2:0,3:1,4:7,5:37}):
if n in d:
return d[n]
d[n]=10*a(n-1) - 36*a(n-2) + 57*a(n-3) - 39*a(n-4) + 9*a(n-5)
return d[n]
Showing 1-4 of 4 results.
Comments