A206950
Number of nonisomorphic graded posets with 0 and non-uniform Hasse graph of rank n, with no 3-element antichain.
Original entry on oeis.org
0, 0, 0, 3, 33, 259, 1762, 11093, 66592, 387264, 2202053, 12314587, 67995221, 371697914, 2015659707, 10859379024, 58190011080, 310409500291, 1649579166385, 8738000970251, 46158910515154, 243260704208613, 1279386591175904, 6716811592446952, 35209193397256085
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- V. Retakh, S. Serconek, and R. Wilson, Hilbert Series of Algebras Associated to Directed Graphs and Order Homology, arXiv:1010.6295 [math.RA], 2010-2011.
- Wikipedia, Graded poset
- Index entries for linear recurrences with constant coefficients, signature (13,-59,115,-109,51,-9).
Cf.
A206949 (unique maximal element added.)
Cf.
A206947,
A206948 (requiring exactly two elements in each rank level above 0 with and without maximal element.)
-
Join[{0},LinearRecurrence[{13, -59, 115, -109, 51, -9}, {0, 0, 3, 33, 259, 1762}, 40]]
-
def a(n,adict={0:0,1:0,2:0,3:3,4:33,5:259,6:1762}):
if n in adict:
return adict[n]
adict[n]=13*a(n-1)-59*a(n-2)+115*a(n-3)-109*a(n-4)+51*a(n-5)-9*a(n-6)
return adict[n]
A206901
Number of nonisomorphic graded posets with 0 of rank n with no 3-element antichain.
Original entry on oeis.org
1, 2, 8, 39, 199, 1027, 5316, 27539, 142694, 739416, 3831589, 19855045, 102887673, 533158028, 2762794601, 14316644946, 74188042696, 384438233215, 1992137140383, 10323141778619, 53493935746148, 277202543857995, 1436447874880342, 7443591492820888
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Vladimir Retakh, Shirlei Serconek, and Robert Wilson, Hilbert series of algebras associated to direct graphs and order homology, arXiv 1010.6295 [math.RA], 2010-2011.
- Wikipedia, Graded poset
- Index entries for linear recurrences with constant coefficients, signature (7,-10,3).
Cf.
A124292 (counts with unique maximal element).
Cf.
A025192,
A206902 (adding a uniformity condition in the sense of the Retakh et al. paper with and without maximal elements).
-
m = {{3, 3, 1, 0}, {1, 3, 0, 0}, {2, 3, 1, 0}, {6, 9, 2, 0}}; Table[MatrixPower[m, n][[4,3]], {n, 1, 40}]
-
def a(n,adict={0:1,1:2,2:8}):
if n in adict:
return adict[n]
adict[n]=7*a(n-1)-10*a(n-2)+3*a(n-3)
return adict[n]
A208736
Number of nonisomorphic graded posets with 0 and 1 and non-uniform Hasse graph of rank n, with exactly 2 elements of each rank level between 0 and 1.
Original entry on oeis.org
0, 0, 0, 1, 5, 22, 91, 361, 1392, 5265, 19653, 72694, 267179, 977593, 3565600, 12975457, 47142021, 171075606, 620303547, 2247803785, 8141857808, 29481675889, 106728951109, 386314552438, 1398132674955, 5059626441177, 18308871648576, 66249898660801
Offset: 0
- R. Stanley, Enumerative combinatorics. Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- V. Retakh, S. Serconek, and R. Wilson, Hilbert Series of Algebras Associated to Directed Graphs and Order Homology, arXiv:1010.6295 [math.RA], 2010-2011.
- Wikipedia, Graded poset
- Index entries for linear recurrences with constant coefficients, signature (8,-21,20,-5).
Cf.
A208737,
A206901,
A206902,
A206947-
A206950,
A001906,
A025192,
A081567,
A124302,
A124292,
A088305,
A086405,
A012781.
-
Join[{0, 0}, LinearRecurrence[{8, -21, 20, -5}, {0, 1, 5, 22}, 40]]
-
def a(n, d={0:0,1:0,2:0,3:1,4:5,5:22}):
if n in d:
return d[n]
d[n]=8*a(n-1) - 21*a(n-2) + 20*a(n-3) - 5*a(n-4)
return d[n]
A208737
Number of nonisomorphic graded posets with 0 and 1 and non-uniform Hasse graph of rank n, with no 3-element antichain.
Original entry on oeis.org
0, 0, 0, 1, 7, 37, 175, 778, 3325, 13837, 56524, 227866, 909832, 3607294, 14227447, 55894252, 218937532, 855650749, 3338323915, 13007422705, 50631143323, 196928737582, 765495534433, 2974251390529, 11552064922624, 44856304154086
Offset: 0
- R. Stanley, Enumerative combinatorics. Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- V. Retakh, S. Serconek, and R. Wilson, Hilbert Series of Algebras Associated to Directed Graphs and Order Homology, arXiv:1010.6295 [math.RA], 2010-2011.
- Wikipedia, Graded poset
- Index entries for linear recurrences with constant coefficients, signature (10,-36,57,-39,9).
Cf.
A208736,
A206901,
A206902,
A206947-
A206950,
A001906,
A025192,
A081567,
A124302,
A124292,
A088305,
A086405,
A012781.
-
Join[{0}, LinearRecurrence[{10, -36, 57, -39, 9}, {0, 0, 1, 7, 37}, 40]]
-
def a(n, d={0:0,1:0,2:0,3:1,4:7,5:37}):
if n in d:
return d[n]
d[n]=10*a(n-1) - 36*a(n-2) + 57*a(n-3) - 39*a(n-4) + 9*a(n-5)
return d[n]
Showing 1-4 of 4 results.
Comments