cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206946 Primes of the form (m^p-1)/(m-1), where abs(m) > 1 and p is an odd prime.

Original entry on oeis.org

3, 7, 11, 13, 31, 43, 61, 73, 127, 157, 211, 241, 307, 421, 463, 521, 547, 601, 683, 757, 1093, 1123, 1483, 1723, 2551, 2731, 2801, 2971, 3307, 3541, 3907, 4423, 4831, 5113, 5701, 6007, 6163, 6481, 8011, 8191, 9091, 9901, 10303, 11131, 12211, 12433, 13421
Offset: 1

Views

Author

Lei Zhou, Feb 28 2012

Keywords

Comments

Old name was: Very generalized repunit prime numbers.
These numbers are prime numbers that can be written in the form of (11...1) base m, with 3 or more ones and |m| > 1.
This sequence is the prime numbers picked from A206943.
Generalized repunit prime numbers are defined in the Caldwell link, as the form of (111...1) base m with numbers of ones >= (1/5)m.
This sequence includes all (111...1) base m primes with m < 1 and number of ones > 2.

Examples

			3 = (111) base -2, so a(1) = 3;
7 = (111) base 2, so a(2) = 7;
11 = (11111) base -2, so a(3) = 11.
31 = (2^5-1)/(2-1) = (5^3-1)/(5-1) = (6^3+1)/(6+1),
43 = (2^7+1)/(2+1) = (7^3+1)/(7+1) = (6^3-1)/(6-1),
8191 = (2^13-1)/(2-1) = (90^3-1)/(90-1) = (91^3+1)/(91+1).
		

Crossrefs

Programs

  • Mathematica
    phiinv[n_, pl_] := Module[{i, p, e, pe, val}, If[pl == {}, Return[If[n == 1, {1}, {}]]]; val = {}; p = Last[pl]; For[e = 0; pe = 1, e == 0 || Mod[n, (p - 1) pe/p] == 0, e++; pe *= p, val = Join[val, pe*phiinv[If[e == 0, n, n*p/pe/(p - 1)], Drop[pl, -1]]]]; Sort[val]]; phiinv[n_] := phiinv[n, Select[1 + Divisors[n], PrimeQ]]; maxdata = 13500; max = Ceiling[(1 + Sqrt[1 + 4*(maxdata - 1)])/4]*2; eb = 2*Floor[(Log[2, maxdata])/2 + 0.5]; While[eg = phiinv[eb]; lu = Length[eg]; lu == 0, eb = eb + 2]; t = Select[Range[eg[[Length[eg]]]], ((EulerPhi[#] <= eb) && (a = FactorInteger[#]; b = Length[a]; (((b == 1) && (a[[1]][[1]] > 2)) || ((b == 2) && (a[[1]][[1]] == 2))))) &]; ap = SortBy[t, Cyclotomic[#, 2] &]; a = {}; Do[i = 0; While[i++; cc = Cyclotomic[ap[[i]], m]; cc <= maxdata, If[PrimeQ[cc], a = Append[a, cc]]], {m, 2, max}]; Union[a]
    nn = 120; ps = Prime[Range[2, PrimePi[Log[2, 2*nn^2 + 1]]]]; t = {}; Do[n = 0; If[Abs[m] > 1, n = (m^p - 1)/(m - 1); If[n > nn^2, n = 0]]; If[PrimeQ[n], AppendTo[t, n]], {p, ps}, {m, -nn, nn}]; t = Union[t] (* T. D. Noe, May 03 2013 *)

Extensions

Better name and new examples by Thomas Ordowski, Apr 28 2013