A206946 Primes of the form (m^p-1)/(m-1), where abs(m) > 1 and p is an odd prime.
3, 7, 11, 13, 31, 43, 61, 73, 127, 157, 211, 241, 307, 421, 463, 521, 547, 601, 683, 757, 1093, 1123, 1483, 1723, 2551, 2731, 2801, 2971, 3307, 3541, 3907, 4423, 4831, 5113, 5701, 6007, 6163, 6481, 8011, 8191, 9091, 9901, 10303, 11131, 12211, 12433, 13421
Offset: 1
Keywords
Examples
3 = (111) base -2, so a(1) = 3; 7 = (111) base 2, so a(2) = 7; 11 = (11111) base -2, so a(3) = 11. 31 = (2^5-1)/(2-1) = (5^3-1)/(5-1) = (6^3+1)/(6+1), 43 = (2^7+1)/(2+1) = (7^3+1)/(7+1) = (6^3-1)/(6-1), 8191 = (2^13-1)/(2-1) = (90^3-1)/(90-1) = (91^3+1)/(91+1).
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Chris Caldwell, The Top Twenty: Generalized Repunit
Programs
-
Mathematica
phiinv[n_, pl_] := Module[{i, p, e, pe, val}, If[pl == {}, Return[If[n == 1, {1}, {}]]]; val = {}; p = Last[pl]; For[e = 0; pe = 1, e == 0 || Mod[n, (p - 1) pe/p] == 0, e++; pe *= p, val = Join[val, pe*phiinv[If[e == 0, n, n*p/pe/(p - 1)], Drop[pl, -1]]]]; Sort[val]]; phiinv[n_] := phiinv[n, Select[1 + Divisors[n], PrimeQ]]; maxdata = 13500; max = Ceiling[(1 + Sqrt[1 + 4*(maxdata - 1)])/4]*2; eb = 2*Floor[(Log[2, maxdata])/2 + 0.5]; While[eg = phiinv[eb]; lu = Length[eg]; lu == 0, eb = eb + 2]; t = Select[Range[eg[[Length[eg]]]], ((EulerPhi[#] <= eb) && (a = FactorInteger[#]; b = Length[a]; (((b == 1) && (a[[1]][[1]] > 2)) || ((b == 2) && (a[[1]][[1]] == 2))))) &]; ap = SortBy[t, Cyclotomic[#, 2] &]; a = {}; Do[i = 0; While[i++; cc = Cyclotomic[ap[[i]], m]; cc <= maxdata, If[PrimeQ[cc], a = Append[a, cc]]], {m, 2, max}]; Union[a] nn = 120; ps = Prime[Range[2, PrimePi[Log[2, 2*nn^2 + 1]]]]; t = {}; Do[n = 0; If[Abs[m] > 1, n = (m^p - 1)/(m - 1); If[n > nn^2, n = 0]]; If[PrimeQ[n], AppendTo[t, n]], {p, ps}, {m, -nn, nn}]; t = Union[t] (* T. D. Noe, May 03 2013 *)
Extensions
Better name and new examples by Thomas Ordowski, Apr 28 2013
Comments