A207033 Total number of parts >= 3 in all partitions of n.
0, 0, 1, 2, 4, 8, 13, 22, 35, 54, 80, 121, 172, 247, 347, 484, 661, 906, 1215, 1632, 2162, 2855, 3730, 4871, 6290, 8111, 10381, 13252, 16802, 21269, 26750, 33583, 41948, 52277, 64862, 80326, 99055, 121922, 149541, 183052, 223350, 272038, 330343, 400450, 484154
Offset: 1
Keywords
Examples
a(4) = 2, because 2 parts have size >= 3 in all partitions of 4: [1,1,1,1], [1,1,2], [2,2], [1,3], [4].
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Maple
b:= proc(n, i) option remember; local f, g; if n=0 then [1, 0] elif i<1 then [0, 0] elif i>n then b(n, i-1) else f:= b(n, i-1); g:= b(n-i, i); [f[1]+g[1], f[2]+g[2] +`if`(i>2, g[1], 0)] fi end: a:= n-> b(n, n)[2]: seq(a(n), n=1..50); # Alois P. Heinz, Feb 19 2012
-
Mathematica
b[n_, i_] := b[n, i] = Module[{f, g}, Which[n == 0, {1, 0}, i < 1, {0, 0}, i > n, b[n, i - 1], True, f = b[n, i - 1]; g = b[n - i, i]; {f[[1]] + g[[1]], f[[2]] + g[[2]] + If[i > 2, g[[1]], 0]}]]; a[n_] := b[n, n][[2]]; Array[a, 50] (* Jean-François Alcover, Nov 12 2020, after Alois P. Heinz *)
Formula
G.f.: Sum_{k>=1} x^(3*k)/(1 - x^k) / Product_{j>=1} (1 - x^j). - Ilya Gutkovskiy, Mar 05 2021
Extensions
More terms from Alois P. Heinz, Feb 18 2012