A207040 Generalized Gaussian-Mersenne primes (see below).
5, 13, 29, 37, 41, 61, 109, 113, 397, 1321, 1429, 1613, 2113, 14449, 26317, 246241, 279073, 312709, 525313, 4327489, 7416361, 29247661, 47392381, 107367629, 536903681, 1326700741, 40388473189, 118750098349, 275415303169, 415878438361, 1759217765581
Offset: 1
Keywords
Links
- Marc Chamberland, Binary BBP-Formulae for Logarithms and Generalized Gaussian-Mersenne Primes, Journal of Integer Sequences, Vol. 6 (2003), Article 03.3.7.
- Index entries for Gaussian integers and primes
Programs
-
Mathematica
lst = {}; Do[s = Numerator@FullSimplify@Exp[2*Re@Log@Cyclotomic[n, (1 + I)/2]]; If[PrimeQ[s] && ! MemberQ[lst, s], AppendTo[lst, s]], {n, 2^7}]; Take[Sort[lst], 31]
Formula
The numerator of the rational expression exp(2*Re(log(Phi_n((1 + i)/2)))) is prime, where Phi_n is the n-th cyclotomic polynomial. See A088962 for the values of n that generate primes.