cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207080 The smallest Carmichael number k such that phi(k) does not divide (k-1)^n, where phi is the Euler totient function.

Original entry on oeis.org

561, 2821, 838201, 41471521, 45496270561, 776388344641, 344361421401361, 375097930710820681, 330019822807208371201, 4971170854788923506051
Offset: 1

Views

Author

Keywords

Comments

Conjecture: phi(a(n)) divides (a(n)-1)^(n+1).
a(10) <= 9645020063586019926451. - Daniel Suteu, Dec 25 2020

Crossrefs

Cf. A000010, A002997 (Carmichael numbers), A173703.

Programs

  • PARI
    is_c(n) = { my(f); bittest(n, 0) && !for(i=1, #f=factor(n)~, (f[2, i]==1 && n%(f[1, i]-1)==1)||return) && #f>1; }
    isok(k, n) = ((k-1)^n % eulerphi(k)) != 0;
    a(n) = my(k=1); while (!(is_c(k) && isok(k,n)), k++); k; \\ Michel Marcus, Dec 25 2020

Extensions

a(7)-a(9) from Richard Pinch, Feb 18 2012
a(10) calculated using data from Claude Goutier and added by Amiram Eldar, Apr 20 2024