cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A207170 Number of 2 X n 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

4, 16, 36, 81, 169, 361, 784, 1681, 3600, 7744, 16641, 35721, 76729, 164836, 354025, 760384, 1633284, 3508129, 7535025, 16184529, 34762816, 74666881, 160376896, 344473600, 739894401, 1589218225, 3413480625, 7331811876, 15747991081
Offset: 1

Views

Author

R. H. Hardin, Feb 15 2012

Keywords

Examples

			Some solutions for n=4
..1..1..1..1....1..0..0..1....0..1..1..0....1..1..1..1....1..0..0..1
..0..1..1..1....1..0..0..1....0..1..1..0....1..1..1..1....1..1..1..1
		

Crossrefs

Row 2 of A207169.
Cf. A002478.

Formula

Empirical: a(n) = a(n-1) +a(n-2) +3*a(n-3) +a(n-4) -a(n-5) -a(n-6) for n>7.
G.f: 4*x -x^2*(-16-20*x-29*x^2-4*x^3+13*x^4+9*x^5) / ( (x^3+2*x^2+x-1)*(x^3-x^2-1) ). - R. J. Mathar, Aug 10 2017
Empirical: 31*a(n) = 114*A002478(n) +133*A002478(n-1) +55*A002478(n) +10*A077961(n) +32*A077961(n-1) -24*A077961(n-2) for n>1. - R. J. Mathar, Nov 09 2018

A207171 Number of 3 X n 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

6, 36, 90, 261, 624, 1482, 3808, 9512, 23280, 58080, 144996, 359100, 891940, 2220008, 5514460, 13697376, 34051032, 84622140, 210256020, 522523332, 1298558624, 3226860476, 8018895456, 19927723520, 49521161364, 123062138780, 305817249300
Offset: 1

Views

Author

R. H. Hardin, Feb 15 2012

Keywords

Comments

Row 3 of A207169.

Examples

			Some solutions for n=4:
..0..0..1..0....0..0..1..0....1..0..0..1....1..0..0..1....0..1..1..1
..0..1..1..1....1..1..1..1....0..1..0..0....0..0..1..1....1..1..1..1
..0..0..1..1....1..0..0..1....0..1..0..0....0..0..1..1....1..0..0..1
		

Crossrefs

Cf. A207169.

Formula

Empirical: a(n) = a(n-1) + 9*a(n-3) + 2*a(n-4) + 2*a(n-5) - 12*a(n-6) - 8*a(n-7) + 8*a(n-9) for n>11.
Empirical g.f.: x*(6 + 30*x + 54*x^2 + 117*x^3 + 27*x^4 - 36*x^5 - 203*x^6 - 134*x^7 + 28*x^8 + 120*x^9 + 16*x^10) / (1 - x - 9*x^3 - 2*x^4 - 2*x^5 + 12*x^6 + 8*x^7 - 8*x^9). - Colin Barker, Mar 05 2018

A207164 Number of n X n 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

2, 16, 90, 603, 3445, 15789, 98224, 645217, 3227100, 18747520, 128798244, 720878886, 4180036645, 28917238756, 176708726320, 1057330250552, 7322809072734, 47678383274385, 297647051017140, 2072720881428948
Offset: 1

Views

Author

R. H. Hardin, Feb 15 2012

Keywords

Comments

Diagonal of A207169.

Examples

			Some solutions for n=4
..1..0..0..1....1..1..0..0....0..0..1..0....1..1..1..1....0..1..1..1
..0..1..1..1....1..0..0..1....1..1..1..1....0..1..1..1....0..1..0..0
..0..0..1..1....1..0..0..1....0..0..1..1....0..1..1..0....0..1..0..0
..0..0..1..0....1..0..0..1....0..0..1..1....0..0..1..0....0..1..0..0
		

Crossrefs

Cf. A207169.

A207165 Number of n X 4 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

9, 81, 261, 603, 1161, 1989, 3141, 4671, 6633, 9081, 12069, 15651, 19881, 24813, 30501, 36999, 44361, 52641, 61893, 72171, 83529, 96021, 109701, 124623, 140841, 158409, 177381, 197811, 219753, 243261, 268389, 295191, 323721, 354033, 386181
Offset: 1

Views

Author

R. H. Hardin, Feb 15 2012

Keywords

Comments

Column 4 of A207169.

Examples

			Some solutions for n=4:
..1..1..1..1....1..1..0..0....1..1..0..0....0..0..1..1....1..0..0..1
..0..1..1..1....0..1..0..0....0..0..1..0....1..0..0..1....0..1..1..0
..0..1..1..0....0..1..0..0....0..0..1..0....1..0..0..1....0..0..1..0
..0..0..1..0....0..1..0..0....0..0..1..0....1..0..0..1....0..0..1..0
		

Crossrefs

Cf. A207169.

Formula

Empirical: a(n) = 9*n^3 + 9*n - 9.
Conjectures from Colin Barker, Jun 19 2018: (Start)
G.f.: 9*x*(1 + 5*x - x^2 + x^3) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4.
(End)

A207166 Number of n X 5 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

13, 169, 624, 1612, 3445, 6513, 11284, 18304, 28197, 41665, 59488, 82524, 111709, 148057, 192660, 246688, 311389, 388089, 478192, 583180, 704613, 844129, 1003444, 1184352, 1388725, 1618513, 1875744, 2162524, 2481037, 2833545, 3222388, 3649984
Offset: 1

Views

Author

R. H. Hardin, Feb 15 2012

Keywords

Comments

Column 5 of A207169.

Examples

			Some solutions for n=4:
..1..1..1..1..0....1..1..0..0..1....1..0..0..1..0....1..1..1..0..0
..1..1..1..1..1....0..0..1..1..0....1..1..1..0..0....0..1..1..1..1
..1..1..1..1..1....0..0..1..0..0....0..0..1..0..0....0..1..1..1..0
..1..1..0..0..1....0..0..1..0..0....0..0..1..0..0....0..0..1..1..0
		

Crossrefs

Cf. A207169.

Formula

Empirical: a(n) = (13/4)*n^4 + (13/2)*n^3 + (117/4)*n^2 - 26*n.
Conjectures from Colin Barker, Jun 19 2018: (Start)
G.f.: 13*x*(1 + 8*x - 7*x^2 + 4*x^3) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)

A207167 Number of n X 6 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

19, 361, 1482, 3952, 8455, 15789, 26866, 42712, 64467, 93385, 130834, 178296, 237367, 309757, 397290, 501904, 625651, 770697, 939322, 1133920, 1356999, 1611181, 1899202, 2223912, 2588275, 2995369, 3448386, 3950632, 4505527, 5116605
Offset: 1

Views

Author

R. H. Hardin, Feb 15 2012

Keywords

Comments

Column 6 of A207169.

Examples

			Some solutions for n=4:
..1..1..1..1..0..0....1..0..0..1..0..0....1..0..0..1..0..0....1..0..0..1..0..0
..0..0..1..0..0..1....0..1..1..0..0..1....1..1..1..0..0..1....0..1..1..0..0..1
..0..0..1..0..0..1....0..0..1..0..0..1....0..0..1..0..0..1....0..1..1..0..0..1
..0..0..1..0..0..1....0..0..1..0..0..1....0..0..1..0..0..1....0..0..1..0..0..1
		

Crossrefs

Cf. A207169.

Formula

Empirical: a(n) = (19/4)*n^4 + (95/2)*n^3 - (57/4)*n^2 - 19*n.
Conjectures from Colin Barker, Jun 20 2018: (Start)
G.f.: 19*x*(1 + 14*x - 7*x^2 - 2*x^3) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)

A207168 Number of n X 7 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

28, 784, 3808, 11452, 26908, 54208, 98224, 164668, 260092, 391888, 568288, 798364, 1092028, 1460032, 1913968, 2466268, 3130204, 3919888, 4850272, 5937148, 7197148, 8647744, 10307248, 12194812, 14330428, 16734928, 19429984, 22438108, 25782652
Offset: 1

Views

Author

R. H. Hardin, Feb 15 2012

Keywords

Comments

Column 7 of A207169.

Examples

			Some solutions for n=4:
..0..1..0..0..1..1..0....1..0..0..1..0..0..1....0..0..1..0..0..1..1
..1..1..0..0..1..1..1....0..1..1..1..1..1..1....0..1..1..1..1..1..0
..1..1..0..0..1..1..1....0..1..1..1..0..0..1....0..0..1..0..0..1..0
..0..1..0..0..1..0..0....0..0..1..1..0..0..1....0..0..1..0..0..1..0
		

Crossrefs

Cf. A207169.

Formula

Empirical: a(n) = 35*n^4 + 42*n^3 + 7*n^2 - 84*n + 28.
Conjectures from Colin Barker, Jun 20 2018: (Start)
G.f.: 28*x*(1 + 23*x + 6*x^2 - x^3 + x^4) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)

A207172 Number of 4 X n 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

8, 64, 168, 603, 1612, 3952, 11452, 32021, 84300, 231616, 641775, 1736910, 4732822, 12996466, 35450695, 96651608, 264382416, 722256895, 1971272340, 5385783204, 14714016328, 40180554949, 109749174712, 299799902720, 818831131779
Offset: 1

Views

Author

R. H. Hardin, Feb 15 2012

Keywords

Comments

Row 4 of A207169.

Examples

			Some solutions for n=4:
..1..0..0..1....1..1..0..0....1..1..1..1....0..1..0..0....0..0..1..1
..0..1..1..1....0..0..1..0....0..1..1..1....0..1..0..0....0..1..0..0
..0..0..1..1....0..0..1..0....0..1..1..0....0..1..0..0....0..1..0..0
..0..0..1..0....0..0..1..0....0..0..1..0....0..1..0..0....0..1..0..0
		

Crossrefs

Cf. A207169.

Formula

Empirical: a(n) = a(n-1) + 13*a(n-3) + 3*a(n-4) + 3*a(n-5) - 27*a(n-6) - 18*a(n-7) + 27*a(n-9) for n>11.
Empirical g.f.: x*(8 + 56*x + 104*x^2 + 331*x^3 + 153*x^4 - 60*x^5 - 819*x^6 - 828*x^7 - 54*x^8 + 837*x^9 + 324*x^10) / ((1 - x - 13*x^3 - 3*x^4 - 3*x^5 + 27*x^6 + 18*x^7 - 27*x^9)). - Colin Barker, Jun 20 2018

A207173 Number of 5 X n 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

10, 100, 270, 1161, 3445, 8455, 26908, 82861, 228060, 672760, 2029041, 5846337, 17039101, 50518174, 147655795, 430953736, 1267685262, 3717105229, 10874111625, 31898934243, 93554384968, 274033182253, 803273682808, 2355253402240
Offset: 1

Views

Author

R. H. Hardin, Feb 15 2012

Keywords

Comments

Row 5 of A207169.

Examples

			Some solutions for n=4:
..1..1..1..1....0..1..1..0....1..1..0..0....0..1..1..0....0..0..1..1
..1..1..1..1....0..1..1..1....0..0..1..1....0..0..1..1....1..0..0..1
..1..1..1..1....0..0..1..1....0..0..1..1....0..0..1..0....1..0..0..1
..1..1..0..0....0..0..1..0....0..0..1..0....0..0..1..0....1..0..0..1
..0..1..0..0....0..0..1..0....0..0..1..0....0..0..1..0....1..0..0..1
		

Crossrefs

Cf. A207169.

Formula

Empirical: a(n) = a(n-1) + 17*a(n-3) + 4*a(n-4) + 4*a(n-5) - 48*a(n-6) - 32*a(n-7) + 64*a(n-9) for n>11.
Empirical g.f.: x*(10 + 90*x + 170*x^2 + 721*x^3 + 544*x^4 - 20*x^5 - 2284*x^6 - 3216*x^7 - 800*x^8 + 3392*x^9 + 2304*x^10) / ((1 - 2*x - 8*x^3)*(1 + x + 2*x^2 - 5*x^3 - 6*x^4 + 8*x^6)). - Colin Barker, Jun 20 2018

A207174 Number of 6 X n 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

12, 144, 396, 1989, 6513, 15789, 54208, 182081, 515760, 1608288, 5222049, 15774129, 48430957, 153161876, 472757845, 1455155232, 4543272108, 14099458893, 43567325145, 135359672373, 420297279776, 1301704097801, 4038233202624
Offset: 1

Views

Author

R. H. Hardin, Feb 15 2012

Keywords

Comments

Row 6 of A207169.

Examples

			Some solutions for n=4:
..0..1..1..1....0..0..1..1....1..1..0..0....1..0..0..1....1..0..0..1
..1..0..0..1....1..1..1..1....0..0..1..0....0..1..0..0....0..0..1..0
..1..0..0..1....0..0..1..0....0..0..1..0....0..1..0..0....0..0..1..0
..1..0..0..1....0..0..1..0....0..0..1..0....0..1..0..0....0..0..1..0
..1..0..0..1....0..0..1..0....0..0..1..0....0..1..0..0....0..0..1..0
..1..0..0..1....0..0..1..0....0..0..1..0....0..1..0..0....0..0..1..0
		

Crossrefs

Cf. A207169.

Formula

Empirical: a(n) = a(n-1) + 21*a(n-3) + 5*a(n-4) + 5*a(n-5) - 75*a(n-6) - 50*a(n-7) + 125*a(n-9) for n>11.
Empirical g.f.: x*(12 + 132*x + 252*x^2 + 1341*x^3 + 1440*x^4 + 180*x^5 - 5150*x^6 - 9425*x^7 - 3500*x^8 + 10125*x^9 + 10000*x^10) / (1 - x - 21*x^3 - 5*x^4 - 5*x^5 + 75*x^6 + 50*x^7 - 125*x^9). - Colin Barker, Jun 21 2018
Showing 1-10 of 11 results. Next