A231764 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with no element having a strict majority of its horizontal, diagonal and antidiagonal neighbors equal to one.
9, 33, 16, 100, 136, 36, 315, 625, 660, 81, 961, 2976, 5041, 3213, 169, 3024, 15625, 38160, 40000, 14989, 361, 9409, 84817, 356409, 493695, 303601, 70927, 784, 29319, 440896, 3453471, 8231161, 5879679, 2353156, 338352, 1681, 91204, 2280000
Offset: 1
Examples
Some solutions for n=3 k=4 ..0..1..0..1..1....1..1..1..0..1....0..0..0..0..1....0..1..1..1..0 ..1..0..0..0..0....0..0..0..1..0....0..0..1..0..0....0..0..1..0..0 ..1..0..0..0..1....0..0..0..0..0....0..0..0..1..1....1..0..0..0..0 ..1..0..0..0..0....0..0..0..0..0....1..1..0..0..1....1..0..0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..219
Crossrefs
Column 1 is A207170 for n>1
Formula
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2) +3*a(n-3) +a(n-4) -a(n-5) -a(n-6)
k=2: [order 21]
k=3: [order 45]
Empirical for row n:
n=1: a(n) = 3*a(n-1) +a(n-3) +7*a(n-4) -20*a(n-5) -2*a(n-6) -4*a(n-8) +8*a(n-9)
n=2: [order 36]
Comments