cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A207808 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 1 0 and 1 0 1 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 10, 36, 36, 10, 16, 100, 102, 100, 16, 26, 256, 378, 370, 256, 26, 42, 676, 1260, 1970, 1232, 676, 42, 68, 1764, 4374, 9040, 9168, 4238, 1764, 68, 110, 4624, 14946, 43990, 57184, 44538, 14406, 4624, 110, 178, 12100, 51384, 209050, 382288
Offset: 1

Views

Author

R. H. Hardin Feb 20 2012

Keywords

Comments

Table starts
..2....4.....6......10.......16........26.........42..........68...........110
..4...16....36.....100......256.......676.......1764........4624.........12100
..6...36...102.....378.....1260......4374......14946.......51384........176238
.10..100...370....1970.....9040.....43990.....209050.....1002960.......4793390
.16..256..1232....9168....57184....382288....2485392....16340928.....106947696
.26..676..4238...44538...379444...3511534...31431114...285153752....2572767886
.42.1764.14406..212814..2472540..31569510..388134978..4844843724...60105117534
.68.4624.49164.1022652.16206848.285774964.4829044276.82999241712.1416863447084

Examples

			Some solutions for n=4 k=3
..0..1..0....0..1..1....0..1..0....1..0..0....1..1..0....1..1..0....0..1..1
..0..1..1....1..1..0....0..1..1....0..1..1....1..1..0....0..1..0....0..1..1
..0..1..1....1..1..0....1..1..1....0..1..1....1..0..0....0..1..1....0..1..0
..0..1..0....0..1..0....1..0..0....1..1..1....1..0..1....1..0..1....0..1..0
		

Crossrefs

Column 1 is A006355(n+2)
Column 2 is A206981
Column 3 is A207249
Row 1 is A006355(n+2)
Row 2 is A206981
Row 3 is A060521

A207858 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 1 0 and 1 0 1 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 9, 36, 36, 10, 15, 81, 102, 100, 16, 25, 225, 289, 370, 256, 26, 40, 625, 1071, 1369, 1232, 676, 42, 64, 1600, 3969, 7289, 5929, 4238, 1764, 68, 104, 4096, 13230, 38809, 44121, 26569, 14406, 4624, 110, 169, 10816, 44100, 178088, 328329
Offset: 1

Views

Author

R. H. Hardin Feb 21 2012

Keywords

Comments

Table starts
..2....4.....6......9.......15........25.........40..........64...........104
..4...16....36.....81......225.......625.......1600........4096.........10816
..6...36...102....289.....1071......3969......13230.......44100........153090
.10..100...370...1369.....7289.....38809.....178088......817216.......3976696
.16..256..1232...5929....44121....328329....2047902....12773476......85393582
.26..676..4238..26569...279219...2934369...24999522...212984836....1971051046
.42.1764.14406.117649..1737981..25674489..298294290..3465676900...44249929850
.68.4624.49164.522729.10873197.226171521.3584335104.56804048896.1001624438528

Examples

			Some solutions for n=4 k=3
..0..1..1....0..0..1....0..1..1....0..0..1....0..1..1....1..1..1....0..0..1
..0..1..1....0..1..1....1..1..0....0..0..1....1..0..0....1..1..0....0..0..1
..0..1..1....0..1..1....1..1..0....1..0..1....1..0..0....1..0..0....1..1..1
..0..1..1....0..1..1....1..0..1....1..0..0....1..1..0....1..0..1....1..1..0
		

Crossrefs

Column 1 is A006355(n+2)
Column 2 is A206981
Column 3 is A207249
Row 1 is A006498(n+2)
Row 2 is A189145(n+2)
Row 3 is A207704

A207949 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 1 0 and 1 0 1 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 9, 36, 36, 10, 12, 81, 102, 100, 16, 16, 144, 289, 370, 256, 26, 20, 256, 612, 1369, 1232, 676, 42, 25, 400, 1296, 3478, 5929, 4238, 1764, 68, 30, 625, 2340, 8836, 18172, 26569, 14406, 4624, 110, 36, 900, 4225, 18330, 55696, 98126, 117649
Offset: 1

Views

Author

R. H. Hardin Feb 21 2012

Keywords

Comments

Table starts
..2....4.....6......9......12.......16.......20........25........30.........36
..4...16....36.....81.....144......256......400.......625.......900.......1296
..6...36...102....289.....612.....1296.....2340......4225......6890......11236
.10..100...370...1369....3478.....8836....18330.....38025.....69420.....126736
.16..256..1232...5929...18172....55696...133812....321489....662256....1364224
.26..676..4238..26569...98126...362404..1007146...2798929...6501278...15100996
.42.1764.14406.117649..524104..2334784..7513176..24176889..63380130..166152100
.68.4624.49164.522729.2806686.15069924.56114310.208947025.617864520.1827049536

Examples

			Some solutions for n=4 k=3
..1..1..0....1..1..0....0..0..0....1..0..0....0..1..0....0..1..0....0..1..0
..0..0..0....1..0..1....1..0..0....0..0..0....1..0..0....1..0..1....0..1..0
..0..0..0....1..0..1....1..1..1....0..0..0....1..0..1....1..0..1....0..1..0
..1..0..0....0..1..0....1..1..1....0..1..0....1..1..1....1..1..0....0..1..0
		

Crossrefs

Column 1 is A006355(n+2)
Column 2 is A206981
Column 3 is A207249
Column 4 is A207854
Row 1 is A002620(n+2)
Row 2 is A030179(n+2)
Row 3 is A207118
Showing 1-3 of 3 results.