cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207293 Primes p whose digit sum s(p) is also prime but whose iterated digit sum s(s(p)) is not prime.

Original entry on oeis.org

67, 89, 139, 157, 179, 193, 197, 199, 229, 269, 283, 337, 359, 373, 379, 397, 409, 449, 463, 467, 487, 557, 571, 577, 593, 607, 643, 647, 661, 683, 719, 733, 739, 751, 757, 773, 809, 823, 827, 829, 863, 881, 883, 919, 937, 953, 971, 991, 1039, 1093, 1097, 1129, 1187
Offset: 1

Views

Author

Jonathan Sondow, Jun 09 2012

Keywords

Comments

A046704 is primes p with s(p) also prime. A207294 is primes p with s(p) and s(s(p)) also prime. A070027 is primes p with all s(p), s(s(p)), s(s(s(p))), ... also prime. A104213 is primes p with s(p) not prime. A213354 is primes p with s(p) and s(s(p)) also prime but s(s(s(p))) not prime. A213355 is smallest prime p whose k-fold digit sum s(s(..s(p)..)) is also prime for all k < n, but not for k = n.

Examples

			67 is prime and s(67) = 6+7 = 13 is also prime, but s(s(67)) = s(13) = 1+3 = 4 is not prime. Since no smaller prime has this property, a(1) = 67.
		

Crossrefs

Programs

  • Maple
    isA207293 := proc(n)
        local d;
        if isprime(n) then
            d := digsum(n) ;
            if isprime(d) then
                d := digsum(d) ;
                if isprime(d) then
                    false ;
                else
                    true ;
                end if;
            else
                false ;
            end if;
        else
            false;
        end if;
    end proc:
    A207293 := proc(n)
        option remember ;
        if n = 1 then
            67 ;
        else
            a := nextprime(procname(n-1)) ;
            while not isA207293(a) do
                a := nextprime(a) ;
            end do:
            a ;
        end if;
    end proc: # R. J. Mathar, Feb 04 2021
  • Mathematica
    Select[Prime[Range[300]],
    PrimeQ[Apply[Plus, IntegerDigits[#]]] && !
        PrimeQ[Apply[Plus, IntegerDigits[Apply[Plus, IntegerDigits[#]]]]] &]
    idsQ[n_]:=PrimeQ[Rest[NestList[Total[IntegerDigits[#]]&,n,2]]]=={True,False}; Select[Prime[Range[200]],idsQ] (* Harvey P. Dale, Dec 28 2013 *)
  • PARI
    select(p->my(s=sumdigits(p));isprime(s)&&!isprime(sumdigits(s)), primes(1000)) \\ Charles R Greathouse IV, Jun 10 2012