cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207361 Displacement under constant discrete unit surge.

Original entry on oeis.org

0, 1, 11, 53, 173, 448, 994, 1974, 3606, 6171, 10021, 15587, 23387, 34034, 48244, 66844, 90780, 121125, 159087, 206017, 263417, 332948, 416438, 515890, 633490, 771615, 932841, 1119951, 1335943, 1584038, 1867688
Offset: 0

Views

Author

Jonathan Vos Post, Feb 18 2012

Keywords

Comments

Assume discrete times 0, 1, 2, 3, ...
Assume constant discrete unit surge (= jerk = rate of change of acceleration) starting surge(0) = 0.
Also assume acceleration(0) = velocity(0) = displacement(0) = 0.
So at t = 0, 1, 2, 3, 4, ... the acceleration = 0, 1, 2, 3, 4, ...
Then the velocity v(t) = v(t-1) + a(t)*t.
So the displacement = s(t) = s(t-1) + v(t)*t.
v(0,1,2,3,4,...) = 0, 1, 5, 14, 30, 55, 91, 140, ... = A000330(n).
The subsequence of primes is finite with three terms 11, 53, and 173.

Examples

			s(4) = s(3) + v(4)*4 =  53 +  30*4 =  53 + 120 =  173;
s(5) = s(4) + v(5)*5 = 173 +  55*5 = 173 + 275 =  448;
s(6) = s(5) + v(6)*6 = 448 +  91*6 = 448 + 546 =  994;
s(7) = s(6) + v(7)*7 = 994 + 140*7 = 994 + 980 = 1974.
		

Crossrefs

Programs

  • Maple
    a:=n->sum(sum(i^2*j,j=i..n),i=0..n): seq(a(n),n=0..30); # Robert FERREOL, May 24 2022
  • Mathematica
    a[0] = 0; a[n_] := a[n] = a[n-1] + n^2*(n+1)*(2*n+1)/6; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Oct 22 2015 *)
  • Maxima
    A207361(n) := block(
            n*(1+n)*(2+n)*(1+11*n+8*n^2)/120
    )$ /* R. J. Mathar, Mar 08 2012 */

Formula

a(0) = 0; for n>0, a(n) = a(n-1) + n*A000330(n) = a(n-1) + n*(0^2 + 1^2 + 2^2 + ... + n^2) = a(n-1) + n^2*(n+1)*(2*n+1)/6 = n*(1+n)*(2+n)*(1 + 11*n + 8*n^2)/120 = (2*n + 25*n^2 + 50*n^3 + 35*n^4 + 8*n^5)/120.
G.f.: x*(2*x^2+5*x+1) / (x-1)^6. - Colin Barker, May 06 2013
a(n) = Sum_{i=0..n-1} A108678(i). - J. M. Bergot, May 02 2018
a(n) = Sum_{0<=i<=j<=n} i^2*j. - Robert FERREOL, May 24 2022