A207361 Displacement under constant discrete unit surge.
0, 1, 11, 53, 173, 448, 994, 1974, 3606, 6171, 10021, 15587, 23387, 34034, 48244, 66844, 90780, 121125, 159087, 206017, 263417, 332948, 416438, 515890, 633490, 771615, 932841, 1119951, 1335943, 1584038, 1867688
Offset: 0
Examples
s(4) = s(3) + v(4)*4 = 53 + 30*4 = 53 + 120 = 173; s(5) = s(4) + v(5)*5 = 173 + 55*5 = 173 + 275 = 448; s(6) = s(5) + v(6)*6 = 448 + 91*6 = 448 + 546 = 994; s(7) = s(6) + v(7)*7 = 994 + 140*7 = 994 + 980 = 1974.
Links
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Programs
-
Maple
a:=n->sum(sum(i^2*j,j=i..n),i=0..n): seq(a(n),n=0..30); # Robert FERREOL, May 24 2022
-
Mathematica
a[0] = 0; a[n_] := a[n] = a[n-1] + n^2*(n+1)*(2*n+1)/6; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Oct 22 2015 *)
-
Maxima
A207361(n) := block( n*(1+n)*(2+n)*(1+11*n+8*n^2)/120 )$ /* R. J. Mathar, Mar 08 2012 */
Formula
a(0) = 0; for n>0, a(n) = a(n-1) + n*A000330(n) = a(n-1) + n*(0^2 + 1^2 + 2^2 + ... + n^2) = a(n-1) + n^2*(n+1)*(2*n+1)/6 = n*(1+n)*(2+n)*(1 + 11*n + 8*n^2)/120 = (2*n + 25*n^2 + 50*n^3 + 35*n^4 + 8*n^5)/120.
G.f.: x*(2*x^2+5*x+1) / (x-1)^6. - Colin Barker, May 06 2013
a(n) = Sum_{i=0..n-1} A108678(i). - J. M. Bergot, May 02 2018
a(n) = Sum_{0<=i<=j<=n} i^2*j. - Robert FERREOL, May 24 2022
Comments