cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A208435 Expansion of x * f(x) * f(-x^12)^3 * psi(x^3) / psi(x^2) in powers of x where psi(), f() are Ramanujan theta functions.

Original entry on oeis.org

0, 1, 1, -2, 0, 3, -2, -4, 0, 5, 1, -8, 0, 7, -4, -8, 0, 9, 8, -10, 0, 14, -6, -12, 0, 16, 6, -14, 0, 15, -8, -20, 0, 17, 14, -18, 0, 19, -10, -24, 0, 26, 1, -22, 0, 23, -16, -28, 0, 25, 20, -32, 0, 32, -14, -28, 0, 29, 12, -30, 0, 38, -16, -32, 0, 33, 31
Offset: 0

Views

Author

Michael Somos, Feb 26 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			x + x^2 - 2*x^3 + 3*x^5 - 2*x^6 - 4*x^7 + 5*x^9 + x^10 - 8*x^11 + ...
q^5 + q^8 - 2*q^11 + 3*q^17 - 2*q^20 - 4*q^23 + 5*q^29 + q^32 - 8*q^35 + ...
		

Crossrefs

Cf. A207541.

Programs

  • Mathematica
    a[n_]:=SeriesCoefficient[((QP[q^2]^4*QP[q^6]^2*QP[q^12]^3)/(QP[q]*QP[q^3]*
    QP[q^4]^3)), {q, 0, n}]; Table[a[n], {n, -1, 50}] (* G. C. Greubel, Dec 17 2017 *)
  • PARI
    {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^4 * eta(x^6 + A)^2 * eta(x^12 + A)^3 / (eta(x + A) * eta(x^3 + A) * eta(x^4 + A)^3), n))}

Formula

Expansion of q^(-2/3) * eta(q^2)^4 * eta(q^6)^2 * eta(q^12)^3 / (eta(q) * eta(q^3) * eta(q^4)^3) in powers of q.
Euler transform of period 12 sequence [ 1, -3, 2, 0, 1, -4, 1, 0, 2, -3, 1, -4, ...].
a(4*n) = 0. 24 * a(n) = A207541(3*n + 2).

A291124 Expansion of phi(x)^6 * phi(-x)^2 in powers of x where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 8, 16, -32, -144, -16, 448, 192, -912, -88, 2016, -352, -4032, 176, 5504, 64, -7056, 400, 12112, 352, -18144, -768, 21312, -448, -25536, -968, 35168, 1216, -49536, 1584, 56448, -1280, -56208, 1408, 78624, -384, -109008, -1296, 109760, -704, -114912, -1584
Offset: 0

Views

Author

Michael Somos, Aug 17 2017

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700)

Examples

			G.f. = 1 + 8*x + 16*x^2 - 32*x^3 - 144*x^4 - 16*x^5 + 448*x^6 + 192*x^7 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(16), 4), 42); A[1] + 8*A[2] + 16*A[3] - 32*A[4] - 144*A[5] - 16*A[6] + 448*A[7] + 192*A[8] - 912*A[9];
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x]^6 EllipticTheta[ 4, 0, x]^2, {x, 0, n}];
    a[ n_] := SeriesCoefficient[ (QPochhammer[x^2]^7 / (QPochhammer[ x]^2 QPochhammer[ x^4]^3))^4, {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^7 / (eta(x + A)^2 * eta(x^4 + A)^3))^4, n))};
    
  • PARI
    lista(nn) = {q='q+O('q^nn); Vec((eta(q^2)^7/(eta(q)^2*eta(q^4)^3))^4)} \\ Altug Alkan, Mar 21 2018
    

Formula

Expansion of (eta(q^2)^7 / (eta(q)^2 * eta(q^4)^3))^4 in powers of q.
Euler transform of period 4 sequence [8, -20, 8, -8, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 512 (t/i)^4 g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A045820.
G.f.: Product_{k>0} (1 - x^(2*k))^28 / ((1 - x^k)^8 * (1 - x^(4*k))^12).
a(2*n + 1) = 8 * A030211(n). a(4*n + 2) = 16 * A045823(n).
a(2*n) = 16 * (-1)^n * (-sigma_3(n) + sigma_3(n/4)) where sigma_3(n) is the sum of the cubes of the divisors of n if n is an integer else 0.
Convolution square of A207541.
Showing 1-2 of 2 results.