A207629 Triangle of coefficients of polynomials u(n,x) jointly generated with A207630; see the Formula section.
1, 2, 5, 1, 11, 4, 23, 13, 1, 47, 37, 6, 95, 97, 25, 1, 191, 241, 87, 8, 383, 577, 271, 41, 1, 767, 1345, 783, 169, 10, 1535, 3073, 2143, 609, 61, 1, 3071, 6913, 5631, 2001, 291, 12, 6143, 15361, 14335, 6145, 1191, 85, 1, 12287, 33793, 35583, 17921
Offset: 1
Examples
First five rows: 1 2 5 1 11 4 23 13 1
Links
- C. Corsani, D. Merlini, and R. Sprugnoli, Left-inversion of combinatorial sums, Discrete Mathematics, 180 (1998) 107-122.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + v[n - 1, x] v[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x] + 1 Table[Factor[u[n, x]], {n, 1, z}] Table[Factor[v[n, x]], {n, 1, z}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A207629 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A207630 *)
Formula
u(n,x) = u(n-1,x) + v(n-1,x),
v(n,x) = (x + 1)*u(n-1,x) + v(n-1,x) + 1,
where u(1,x) = 1, v(1,x) = 1.
Comments