cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A241061 Number of partitions p of n into distinct parts such that max(p) < 1 + 2*min(p).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 2, 2, 2, 4, 2, 3, 4, 4, 4, 5, 4, 6, 7, 6, 6, 8, 8, 9, 10, 10, 10, 12, 12, 14, 16, 14, 16, 18, 18, 20, 22, 23, 24, 26, 26, 28, 32, 32, 35, 38, 38, 40, 44, 45, 48, 52, 54, 58, 62, 62, 66, 71, 74, 78, 84, 86, 92, 98, 100, 106, 112, 116, 122
Offset: 0

Views

Author

Clark Kimberling, Apr 16 2014

Keywords

Examples

			a(10) counts these 2 partitions: {10}, {6,4}.
		

Crossrefs

Programs

  • Mathematica
    z = 70; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];
      Table[Count[f[n], p_ /; Max[p] < 1 + 2*Min[p]], {n, 0, z}] (* A241061 *)
      Table[Count[f[n], p_ /; Max[p] <= 1 + 2*Min[p]], {n, 0, z}](* A207642 *)
      Table[Count[f[n], p_ /; Max[p] == 1 + 2*Min[p]], {n, 0, z}](* A241062 *)
      Table[Count[f[n], p_ /; Max[p] >= 1 + 2*Min[p]], {n, 0, z}](* A241037 *)
      Table[Count[f[n], p_ /; Max[p] > 1 + 2*Min[p]], {n, 0, z}] (* A241064 *)

Formula

a(n) + A241062(n) + A241064(n) = A000009(n) for n >= 1.
a(n) = A207642(n) - A241062(n) for n >= 0.

A241062 Number of partitions p of n into distinct parts such that max(p) = 1 + 2*min(p).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 2, 1, 0, 1, 2, 1, 2, 0, 1, 3, 2, 2, 2, 1, 2, 4, 4, 2, 3, 2, 3, 6, 4, 4, 6, 4, 4, 5, 6, 8, 8, 7, 6, 8, 7, 8, 12, 10, 10, 13, 12, 11, 12, 12, 14, 18, 18, 17, 18, 18, 18, 22, 20, 22, 26, 25, 28, 30, 29, 30, 32
Offset: 0

Views

Author

Clark Kimberling, Apr 16 2014

Keywords

Examples

			a(10) counts these 2 partitions:  73, 532.
		

Crossrefs

Programs

  • Mathematica
    z = 70; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];
      Table[Count[f[n], p_ /; Max[p] < 1 + 2*Min[p]], {n, 0, z}] (* A241061 *)
      Table[Count[f[n], p_ /; Max[p] <= 1 + 2*Min[p]], {n, 0, z}](* A207642 *)
      Table[Count[f[n], p_ /; Max[p] == 1 + 2*Min[p]], {n, 0, z}](* A241062 *)
      Table[Count[f[n], p_ /; Max[p] >= 1 + 2*Min[p]], {n, 0, z}](* A241037 *)
      Table[Count[f[n], p_ /; Max[p] > 1 + 2*Min[p]], {n, 0, z}] (* A241064 *)

Formula

a(n) + A241061(n) + A241064(n) = A000009(n) for n >= 1.
a(n) = A241037(n) - A241064(n) = A207642(n) - A241061(n) for n >= 0.

A241064 Number of partitions p of n into distinct parts such that max(p) > 1 + 2*min(p).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 2, 4, 4, 6, 8, 11, 13, 16, 21, 26, 32, 38, 45, 56, 66, 79, 94, 110, 128, 151, 178, 207, 240, 277, 320, 370, 426, 488, 561, 642, 732, 834, 948, 1079, 1225, 1388, 1570, 1774, 2002, 2254, 2540, 2856, 3206, 3598, 4034, 4516, 5050, 5642, 6298
Offset: 0

Views

Author

Clark Kimberling, Apr 16 2014

Keywords

Examples

			a(10) counts these 6 partitions:  91, 82, 721, 631, 541, 4321
		

Crossrefs

Programs

Formula

a(n) + A241061(n) + A241062(n) = A000009(n) for n >= 1.
a(n) = A241037(n) - A241062(n) for n>= 0.

A384426 G.f.: Sum_{k>=1} x^k * Product_{j=k..2*k} (1 + x^j).

Original entry on oeis.org

0, 1, 2, 2, 3, 2, 3, 3, 4, 4, 4, 5, 6, 5, 6, 7, 8, 8, 9, 9, 10, 12, 12, 13, 14, 14, 16, 18, 19, 20, 21, 22, 24, 26, 28, 30, 32, 33, 34, 38, 40, 43, 46, 48, 51, 54, 56, 60, 64, 67, 72, 77, 80, 84, 88, 92, 98, 105, 110, 116, 122, 128, 134, 142, 148, 155, 164, 172
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 14 2025

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[x^k * Product[1 + x^j, {j,k,2*k}], {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 100; p = 1; s = 0; Do[p = Simplify[p*(1 + x^(2*k - 1))*(1 + x^(2*k))/(1 + x^k)]; p = Normal[p + O[x]^nmax]; s += p*(1 + x^k)*x^k;, {k, 1, nmax}]; Take[CoefficientList[s, x], nmax + 1]

Formula

a(n) ~ c * exp(r*sqrt(n)) / sqrt(n), where r = 0.926140105877... = 2*sqrt((3/2)*log(z)^2 - polylog(2, 1-z) + polylog(2, 1-z^2)), where z = (-1 + (44 - 3*sqrt(177))^(1/3) + (44 + 3*sqrt(177))^(1/3))/6 = 0.82948354095849703967... is the real root of the equation z^3*(1 - z)/(1 - z^2)^2 = 1 and c = 0.6975701...
Showing 1-4 of 4 results.