cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A207642 Expansion of g.f.: Sum_{n>=0} x^n * Product_{k=0..n-1} (1 + x^(n+k)).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 3, 3, 2, 4, 4, 4, 4, 5, 6, 6, 6, 6, 8, 9, 8, 10, 10, 10, 12, 14, 14, 14, 15, 16, 19, 20, 20, 22, 24, 24, 26, 28, 30, 34, 34, 35, 38, 40, 42, 46, 50, 50, 54, 58, 60, 63, 66, 70, 76, 80, 84, 88, 92, 96, 102, 108, 112, 120, 126, 131, 140, 146, 151
Offset: 0

Views

Author

Paul D. Hanna, Feb 19 2012

Keywords

Comments

Conjecture: a(n) is the number of partitions p of n into distinct parts such that max(p) <= 1 + 2*min(p), for n >= 1 (as in the Mathematica program at A241061). - Clark Kimberling, Apr 16 2014

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + x^3 + 2*x^4 + 2*x^5 + 2*x^6 + 3*x^7 + 3*x^8 + 2*x^9 + 4*x^10 + 4*x^11 + 4*x^12 + 4*x^13 + 5*x^14 + 6*x^15 + 6*x^16 + 6*x^17 + ...
such that, by definition,
A(x) = 1 + x*(1 + x) + x^2*(1 + x^2)*(1 + x^3) + x^3*(1 + x^3)*(1 + x^4)*(1 + x^5) + x^4*(1 + x^4)*(1 + x^5)*(1 + x^6)*(1 + x^7) + x^5*(1 + x^5)*(1 + x^6)*(1 + x^7)*(1 + x^8)*(1 + x^9) + ... + x^n*Product_{k=0..n-1} (1 + x^(n+k)) + ...
Also
A(x) = 1/(1 - x)  +  x^2/((1 - x^2)*(1 - x^3))  +  x^7/((1 - x^3)*(1 - x^4)*(1 - x^5))  +  x^15/((1 - x^4)*(1 - x^5)*(1 - x^6)*(1 - x^7))  +  x^26/((1 - x^5)*(1 - x^6)*(1 - x^7)*(1 - x^8)*(1 - x^9)) + ... + x^(n*(3*n+1)/2)/(Product_{k=0..n} 1 - x^(n+k+1)) + ...
		

Crossrefs

Programs

  • Magma
    m:=80; R:=PowerSeriesRing(Integers(), m); [1] cat Coefficients(R!( (&+[x^n*(&*[1+x^(n+j): j in [0..n-1]]) : n in [1..m]]) )); // G. C. Greubel, Jan 12 2019
    
  • Mathematica
    With[{m = 80}, CoefficientList[Series[Sum[x^n*Product[1+x^(n+j), {j,0, n-1}], {n,0,m}], {x,0,m}], x]] (* G. C. Greubel, Jan 12 2019 *)
    nmax = 100; pk = x + x^2; s = 1 + pk; Do[pk = Normal[Series[pk * x*(1 + x^(2*k - 2))*(1 + x^(2*k - 1))/(1 + x^(k - 1)), {x, 0, nmax}]]; s = s + pk, {k, 2, nmax}]; Take[CoefficientList[s, x], nmax + 1] (* Vaclav Kotesovec, Jun 18 2019 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,x^m*prod(k=0,m-1,1+x^(m+k) +x*O(x^n))),n)}
    for(n=0,80,print1(a(n),", "))
    
  • Sage
    R = PowerSeriesRing(ZZ, 'x')
    m = 80
    x = R.gen().O(m)
    s = sum(x^n*prod(1+x^(n+j) for j in (0..n-1)) for n in (0..m))
    s.coefficients() # G. C. Greubel, Jan 12 2019

Formula

G.f.: Sum_{n>=0} x^(n*(3*n+1)/2) / ( Product_{k=0..n} 1 - x^(n+k+1) ). - Paul D. Hanna, Oct 14 2020
a(n) ~ c * exp(r*sqrt(n)) / sqrt(n), where r = 0.926140105877... = 2*sqrt((3/2)*log(z)^2 - polylog(2, 1-z) + polylog(2, 1-z^2)), where z = (-1 + (44 - 3*sqrt(177))^(1/3) + (44 + 3*sqrt(177))^(1/3))/6 = 0.82948354095849703967... is the real root of the equation z^3*(1 - z)/(1 - z^2)^2 = 1 and c = 0.57862299312... - Vaclav Kotesovec, Jun 29 2019, updated Oct 09 2024

A241062 Number of partitions p of n into distinct parts such that max(p) = 1 + 2*min(p).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 2, 1, 0, 1, 2, 1, 2, 0, 1, 3, 2, 2, 2, 1, 2, 4, 4, 2, 3, 2, 3, 6, 4, 4, 6, 4, 4, 5, 6, 8, 8, 7, 6, 8, 7, 8, 12, 10, 10, 13, 12, 11, 12, 12, 14, 18, 18, 17, 18, 18, 18, 22, 20, 22, 26, 25, 28, 30, 29, 30, 32
Offset: 0

Views

Author

Clark Kimberling, Apr 16 2014

Keywords

Examples

			a(10) counts these 2 partitions:  73, 532.
		

Crossrefs

Programs

  • Mathematica
    z = 70; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];
      Table[Count[f[n], p_ /; Max[p] < 1 + 2*Min[p]], {n, 0, z}] (* A241061 *)
      Table[Count[f[n], p_ /; Max[p] <= 1 + 2*Min[p]], {n, 0, z}](* A207642 *)
      Table[Count[f[n], p_ /; Max[p] == 1 + 2*Min[p]], {n, 0, z}](* A241062 *)
      Table[Count[f[n], p_ /; Max[p] >= 1 + 2*Min[p]], {n, 0, z}](* A241037 *)
      Table[Count[f[n], p_ /; Max[p] > 1 + 2*Min[p]], {n, 0, z}] (* A241064 *)

Formula

a(n) + A241061(n) + A241064(n) = A000009(n) for n >= 1.
a(n) = A241037(n) - A241064(n) = A207642(n) - A241061(n) for n >= 0.

A241064 Number of partitions p of n into distinct parts such that max(p) > 1 + 2*min(p).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 2, 4, 4, 6, 8, 11, 13, 16, 21, 26, 32, 38, 45, 56, 66, 79, 94, 110, 128, 151, 178, 207, 240, 277, 320, 370, 426, 488, 561, 642, 732, 834, 948, 1079, 1225, 1388, 1570, 1774, 2002, 2254, 2540, 2856, 3206, 3598, 4034, 4516, 5050, 5642, 6298
Offset: 0

Views

Author

Clark Kimberling, Apr 16 2014

Keywords

Examples

			a(10) counts these 6 partitions:  91, 82, 721, 631, 541, 4321
		

Crossrefs

Programs

Formula

a(n) + A241061(n) + A241062(n) = A000009(n) for n >= 1.
a(n) = A241037(n) - A241062(n) for n>= 0.

A363221 Number of strict integer partitions of n such that (length) * (maximum) <= 2n.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 11, 14, 15, 19, 23, 26, 29, 37, 39, 49, 55, 62, 71, 84, 93, 108, 118, 141, 149, 188, 193, 217, 257, 279, 318, 369, 376, 441, 495, 572, 587, 692, 760, 811, 960, 1046, 1065, 1307, 1387, 1550, 1703, 1796, 2041, 2295, 2456, 2753, 3014
Offset: 1

Views

Author

Gus Wiseman, May 23 2023

Keywords

Comments

Also strict partitions such that (maximum) <= 2*(mean).
These are strict partitions whose complement (see A361851) has size <= n.

Examples

			The partition y = (4,3,1) has length 3 and maximum 4, and 3*4 <= 2*8, so y is counted under a(8). The complement of y has size 4, which is less than or equal to n = 8.
		

Crossrefs

The equal case for median is A361850, non-strict A361849 (ranks A361856).
The non-strict version is A361851, A361848 for median.
The equal case is A361854, non-strict A361853 (ranks A361855).
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, A058398 by mean.
A051293 counts subsets with integer mean.
A067538 counts partitions with integer mean.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Max@@#<=2*Mean[#]&]],{n,30}]
Showing 1-4 of 4 results.