cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207813 Numbers that match irreducible Zeckendorf polynomials.

Original entry on oeis.org

2, 4, 9, 17, 19, 25, 27, 30, 40, 43, 46, 53, 56, 59, 61, 67, 69, 72, 77, 82, 85, 93, 95, 98, 101, 103, 108, 111, 114, 119, 124, 129, 135, 137, 140, 150, 153, 161, 166, 169, 171, 177, 179, 182, 187, 195, 197, 205, 208, 211, 213, 218, 224, 229, 237, 239
Offset: 1

Views

Author

Clark Kimberling, Feb 20 2012

Keywords

Comments

The Zeckendorf representation of a positive integer n is a unique sum
c(k-2)F(k) + c(k-3)F(k-1) + ... + c(1)F(3) + c(0)F(2),
where F=A000045 (Fibonacci numbers), c(k-2)=1, and for j=0,1,...,k-3, there are two restrictions on coefficients: c(j) is 0 or 1, and c(j)c(j+1)=0; viz., no two consecutive Fibonacci numbers appear. The Zeckendorf polynomial Z(n,x) is introduced here as
c(k-2)x^(k-2) + c(k-3)x^(k-3) + ... + c(1)x + c(0).
The name refers to irreducibility over the field of rational numbers.

Examples

			n   k    Z(n)   Z(n,x)       irreducible
1   2       1   1            no
2   3      10   x            yes
3   4     100   x^2          no
4   4     101   x^2 + 1      yes
5   5    1000   x^3          no
6   5    1001   x^3 + 1      no
7   5    1010   x^3 + x      no
8   5   10000   x^4          no
9   5   10001   x^4 + 1      yes
		

Crossrefs

Programs

  • Mathematica
    fb[n_] := Block[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]],
     t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k],
     AppendTo[fr, 1]; t = t - Fibonacci[k],
     AppendTo[fr, 0]]; k--]; fr]; t = Table[fb[n],
         {n, 1, 350}];
    b[n_] := Reverse[Table[x^k, {k, 0, n}]]
    p[n_, x_] := t[[n]].b[-1 + Length[t[[n]]]]
    Table[p[n, x], {n, 1, 40}] (* Zeckendorf polynomials *)
    u = {}; Do[n++; If[IrreduciblePolynomialQ[p[n, x]],
      AppendTo[u, n]], {n, 300}]; u     (* A207813 *)