A207872 Denominator of Z(n,1/2), where Z(n,x) is the n-th Zeckendorf polynomial.
1, 2, 4, 4, 8, 8, 8, 16, 16, 16, 16, 16, 32, 32, 32, 32, 32, 32, 32, 32, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 256, 256, 256, 256, 256
Offset: 1
Links
- Sajed Haque, Discriminators of Integer Sequences, Thesis, 2017, See p. 36.
Programs
-
Mathematica
fb[n_] := Block[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k--]; fr]; t = Table[fb[n], {n, 1, 500}]; b[n_] := Reverse[Table[x^k, {k, 0, n}]] p[n_, x_] := t[[n]].b[-1 + Length[t[[n]]]] Table[p[n, x], {n, 1, 40}] Denominator[Table[p[n, x] /. x -> 1/2, {n, 1, 120}]] (* A207872 *) Numerator[Table[p[n, x] /. x -> 1/2, {n, 1, 120}]] (* A207873 *)
Comments