cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207820 Let A = A025584. a(n) is the smallest A(m) such that the interval (A(m)*n, A(m+1)*n) contains no primes from A.

Original entry on oeis.org

2, 2, 2, 1783, 967, 1663, 3187, 4813, 13873, 20347, 1783, 2617, 27743, 14533, 54829, 71143, 66169, 46687, 44119, 57787, 79609, 552883, 21397, 297079, 1187107, 89017, 798697, 285763, 761377, 2660587, 812047, 1463257, 2795059, 2816239, 2676727, 3069607, 2500297
Offset: 1

Views

Author

Keywords

Comments

Conjecture. For n>=3, every a(n) is the lesser of a pair of cousin primes p and p+4, cf. A023200.
The limit of a(n) as n goes to infinity is infinity.

Crossrefs

Programs

  • Mathematica
    Table[aPrime[[NestWhile[#1+1&,1,!(nextAPrime[n aPrime[[#1]]]>n aPrime[[#1+1]])&]]],{n,2,20}]
  • PARI
    is_a025584(x) = isprime(x) && !isprime(x-2)
    a025584_next(n) = {local(p); p=n+1; while(!is_a025584(p), p=p+1); p}
    no_a025584(a,b) = {local(x,r); r=1; for(x=a+1, b-1, if(is_a025584(x), r=0)); r}
    a207820(n) = {local(r,rp); rp=2; r=3; while(!no_a025584(n*rp, n*r), rp=r; r=a025584_next(r)); rp} \\ Michael B. Porter, Jan 20 2013

Extensions

a(21)-a(37) from Michael B. Porter, Jan 20 2013