A207820 Let A = A025584. a(n) is the smallest A(m) such that the interval (A(m)*n, A(m+1)*n) contains no primes from A.
2, 2, 2, 1783, 967, 1663, 3187, 4813, 13873, 20347, 1783, 2617, 27743, 14533, 54829, 71143, 66169, 46687, 44119, 57787, 79609, 552883, 21397, 297079, 1187107, 89017, 798697, 285763, 761377, 2660587, 812047, 1463257, 2795059, 2816239, 2676727, 3069607, 2500297
Offset: 1
Keywords
Programs
-
Mathematica
Table[aPrime[[NestWhile[#1+1&,1,!(nextAPrime[n aPrime[[#1]]]>n aPrime[[#1+1]])&]]],{n,2,20}]
-
PARI
is_a025584(x) = isprime(x) && !isprime(x-2) a025584_next(n) = {local(p); p=n+1; while(!is_a025584(p), p=p+1); p} no_a025584(a,b) = {local(x,r); r=1; for(x=a+1, b-1, if(is_a025584(x), r=0)); r} a207820(n) = {local(r,rp); rp=2; r=3; while(!no_a025584(n*rp, n*r), rp=r; r=a025584_next(r)); rp} \\ Michael B. Porter, Jan 20 2013
Extensions
a(21)-a(37) from Michael B. Porter, Jan 20 2013
Comments