A207852 Smallest number m such that there are exactly n ways to partition the numbers {1,...,m} into nonempty sets P and S with the product of the elements of P equal to the sum of elements in S.
1, 3, 12, 10, 19, 26, 33, 39, 55, 74, 48, 62, 71, 99, 45, 140, 96, 176, 104, 144, 159, 175, 230, 191, 320, 328, 240, 334, 259, 344, 279, 308, 303, 505, 419, 560, 714, 550, 455, 665, 684, 670, 751, 935, 899, 800, 1051, 776, 928, 602, 749, 1104, 689, 1295, 1364
Offset: 0
Keywords
Examples
a(1) = 3: 3 = 1+2; a(2) = 12: 1*5*12 = 2+3+4+6+7+8+9+10+11, 2*4*8 = 1+3+5+6+7+9+10+11+12; a(3) = 10: 1*2*3*7 = 4+5+6+8+9+10, 1*4*10 = 2+3+5+6+7+8+9, 6*7 = 1+2+3+4+5+8+9+10.
Programs
-
Haskell
import Data.List (elemIndex) import Data.Maybe (fromJust) a207852 n = (fromJust $ elemIndex n a178830_list) + 1
Extensions
a(25)-a(54) from Alois P. Heinz, Jun 07 2012
Comments