A207890 a(0)=1; for n>=1,- the minimal increasing sequence, such that, for n>=1, the row sums of Pascal-like triangle with left side {1,1,1,...} and right side {a(0), a(1), a(2),...} form an increasing sequence of primes.
1, 1, 2, 3, 4, 5, 8, 11, 14, 17, 20, 29, 44, 55, 66, 69, 72, 77, 86, 149, 152, 167, 172, 183, 198, 229, 230, 233, 254, 267, 276, 285, 316, 355, 370, 377, 402, 423, 458, 469, 478, 517, 570, 623, 704, 725, 730, 753, 762, 801, 818, 839, 858, 861, 938, 943, 982
Offset: 0
Examples
Triangle begins n/k.|..0.....1.....2.....3.....4.....5.....6.....7 ================================================== .0..|..1 .1..|..1.....1 .2..|..1.....2.....2 .3..|..1.....3.....4.....3 .4..|..1.....4.....7.....7.....4 .5..|..1.....5....11....14....11.....5 .6..|..1.....6....16....25....25....16.....8 .7..|..1.....7....22....41....50....41....24.....11 .8..| The row sums for n >= 1 form sequence A055496.
Crossrefs
Cf. A055496.
Programs
-
Mathematica
rows={{1},{1,1}}; Table[(x=Flatten[{1,2 MovingAverage[rows[[n]],2]}]; sx=Apply[Plus,x]; z=NextPrime[sx,NestWhile[#+1&,1,NextPrime[sx,#]-sx
A207890=Map[Last[#]&,rows]