cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A208176 a(n) = F(n+1)^2, if n>=0 is even (F=A000045) and a(n) = (L(2n+2)+8)/5, if n is odd (L=A000204).

Original entry on oeis.org

1, 3, 4, 11, 25, 66, 169, 443, 1156, 3027, 7921, 20738, 54289, 142131, 372100, 974171, 2550409, 6677058, 17480761, 45765227, 119814916, 313679523, 821223649, 2149991426, 5628750625, 14736260451, 38580030724, 101003831723, 264431464441, 692290561602
Offset: 0

Views

Author

Keywords

Comments

The row sums of Pascal-like triangle with the left side {1,1,1,...} and the right side (a(0), a(1), a(2),...) are F(n+2)^2 (cf. A007598).
Triangle begins:
n/k.|..0.....1.....2.....3.....4.....5.....6.....7
==================================================
.0..|..1
.1..|..1.....3
.2..|..1.....4.....4
.3..|..1.....5.....8....11
.4..|..1.....6....13....19....25
.5..|..1.....7....19....32....44....66
.6..|..1.....8....26....51....76...110...164
.7..|..1.....9....34....77...127...186...279....443
.8..|
This sequence is associated with the identity arctan(1/(a+b)) = arctan(1/a) - arctan(b/(a^2+a*b+1)) (which is due to Euler, see the reference to Beckman), let a = F(n) and b = F(n+1). - Gary Detlefs, Apr 18 2012

References

  • Petr Beckman, The History of Pi, Golem Press, 1977, p. 154

Crossrefs

Programs

  • Maple
    a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <1|-3|0|3>>^n.
             <<1,3,4,11>>)[1,1]:
    seq (a(n), n=0..30);  # Alois P. Heinz, Feb 24 2012
  • Mathematica
    rows={{1},{1,3}}; Table[(x=Flatten[{1, 2MovingAverage[rows[[n]], 2]}]; z=If[EvenQ[n],Fibonacci[n+1]^2, (8+LucasL[(2n+2)])/5]; rows=Append[rows, Append[x,z]]), {n,2,15}]; A208176 = Map[Last[#] &, rows]

Formula

G.f.: -(2*x^3-5*x^2+1)/(x^4-3*x^3+3*x-1). - Alois P. Heinz, Feb 24 2012
a(n) = F(n)^2 + F(n)*F(n+1) + 1. - Gary Detlefs, Apr 18 2012
Showing 1-1 of 1 results.