cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A207939 Number of 3 X n 0..1 arrays avoiding 0 0 1 and 1 0 0 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

6, 36, 98, 271, 844, 2706, 8977, 30168, 102384, 349069, 1193648, 4087980, 14013419, 48061824, 164886926, 565777111, 1941543632, 6663053798, 22867234785, 78480570100, 269349014868, 924424358989, 3172699693492, 10888986998392
Offset: 1

Views

Author

R. H. Hardin, Feb 21 2012

Keywords

Comments

Row 3 of A207938.

Examples

			Some solutions for n=4:
..1..1..1..1....0..0..0..0....1..1..0..1....0..1..1..1....1..1..1..1
..1..1..1..1....0..1..0..1....1..1..1..1....1..1..1..0....0..0..0..0
..1..1..1..1....0..1..0..1....1..1..0..1....1..1..1..1....0..1..1..1
		

Crossrefs

Cf. A207938.

Formula

Empirical: a(n) = 5*a(n-1) - a(n-2) - 20*a(n-3) + 10*a(n-4) + 28*a(n-5) - 9*a(n-6) - 15*a(n-7) + a(n-8) + 2*a(n-9) for n>10.
Empirical g.f.: x*(6 + 6*x - 76*x^2 - 63*x^3 + 247*x^4 + 189*x^5 - 223*x^6 - 171*x^7 + 29*x^8 + 26*x^9) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 - x - x^2)*(1 - 2*x - 5*x^2 + x^4)). - Colin Barker, Mar 06 2018

A207935 Number of n X 5 0..1 arrays avoiding 0 0 1 and 1 0 0 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

14, 196, 844, 2422, 5594, 11256, 20568, 34986, 56294, 86636, 128548, 184990, 259378, 355616, 478128, 631890, 822462, 1056020, 1339388, 1680070, 2086282, 2566984, 3131912, 3791610, 4557462, 5441724, 6457556, 7619054, 8941282, 10440304
Offset: 1

Views

Author

R. H. Hardin, Feb 21 2012

Keywords

Comments

Column 5 of A207938.

Examples

			Some solutions for n=4:
..0..1..0..1..0....1..1..1..0..1....0..0..0..0..0....1..0..1..1..1
..1..1..0..1..1....1..1..0..1..0....0..0..0..0..0....0..1..0..1..1
..1..1..0..1..0....1..1..1..1..1....0..0..0..0..0....0..1..1..1..1
..1..1..0..1..0....1..1..1..1..1....0..0..0..0..0....0..1..1..1..1
		

Crossrefs

Cf. A207938.

Formula

Empirical: a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
Conjectures from Colin Barker, Jun 26 2018: (Start)
G.f.: 2*x*(7 + 56*x - 61*x^2 + 9*x^3 + 6*x^4 - x^5) / (1 - x)^6.
a(n) = (30 - 149*n + 10*n^2 + 250*n^3 + 65*n^4 + 4*n^5) / 15.
(End)

A207936 Number of n X 6 0..1 arrays avoiding 0 0 1 and 1 0 0 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

22, 484, 2706, 9430, 25490, 58602, 120276, 226850, 400646, 671248, 1076902, 1666038, 2498914, 3649382, 5206776, 7277922, 9989270, 13489148, 17950138, 23571574, 30582162, 39242722, 49849052, 62734914, 78275142, 96888872
Offset: 1

Views

Author

R. H. Hardin, Feb 21 2012

Keywords

Comments

Column 6 of A207938.

Examples

			Some solutions for n=4:
..0..0..0..0..0..0....1..1..1..1..1..0....1..1..0..1..1..0....0..0..0..0..0..0
..0..1..0..1..0..1....0..0..0..0..0..0....1..0..1..0..1..1....0..1..1..1..0..1
..0..1..0..1..0..1....0..0..0..0..0..0....1..1..1..1..1..1....0..0..0..0..0..0
..0..1..0..1..0..1....0..0..0..0..0..0....1..1..1..1..1..1....0..0..0..0..0..0
		

Crossrefs

Cf. A207938.

Formula

Empirical: a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7).
Conjectures from Colin Barker, Jun 26 2018: (Start)
G.f.: 2*x*(11 + 165*x - 110*x^2 - 59*x^3 + 68*x^4 - 15*x^5 + x^6) / (1 - x)^7.
a(n) = (720 - 1584*n - 6206*n^2 + 7335*n^3 + 6505*n^4 + 1089*n^5 + 61*n^6) / 360.
(End)

A207937 Number of n X 7 0..1 arrays avoiding 0 0 1 and 1 0 0 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

35, 1225, 8977, 38207, 121313, 319439, 737575, 1544037, 2994871, 5463725, 9477733, 15759955, 25278917, 39305795, 59479787, 87882217, 127119915, 180418417, 251725529, 345825799, 468466441, 626495255, 828011087, 1082527373, 1401149311
Offset: 1

Views

Author

R. H. Hardin, Feb 21 2012

Keywords

Comments

Column 7 of A207938.

Examples

			Some solutions for n=4:
..1..0..1..0..1..0..1....1..0..1..0..1..1..0....1..1..1..1..1..1..1
..1..1..0..1..0..1..0....1..1..1..1..0..1..0....0..1..1..1..1..0..1
..1..0..1..0..1..1..0....1..0..1..0..1..1..0....1..1..1..1..1..1..1
..1..0..1..1..1..1..0....1..0..1..1..1..1..0....0..1..1..1..1..0..1
		

Crossrefs

Cf. A207938.

Formula

Empirical: a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8).
Conjectures from Colin Barker, Jun 26 2018: (Start)
G.f.: x*(35 + 945*x + 157*x^2 - 1269*x^3 + 863*x^4 - 191*x^5 + 5*x^6 - x^7) / (1 - x)^8.
a(n) = (1260 + 4974*n - 32165*n^2 - 6041*n^3 + 51940*n^4 + 21091*n^5 + 2905*n^6 + 136*n^7) / 1260.
(End)

A207940 Number of 4Xn 0..1 arrays avoiding 0 0 1 and 1 0 0 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

8, 64, 200, 643, 2422, 9430, 38207, 156792, 649758, 2703377, 11276024, 47088326, 196773391, 822559178, 3439147214, 14380613647, 60135069834, 251472698220, 1051624711847, 4397789612658, 18391203655144, 76910735347923
Offset: 1

Views

Author

R. H. Hardin Feb 21 2012

Keywords

Comments

Row 4 of A207938

Examples

			Some solutions for n=4
..1..0..1..1....1..0..1..0....0..0..0..0....1..1..1..1....1..0..1..0
..0..1..1..0....1..1..1..1....0..1..1..0....1..1..1..1....0..1..1..0
..1..1..1..1....1..1..1..1....0..0..0..0....1..1..1..1....1..0..1..0
..0..1..1..0....1..1..1..1....0..1..1..0....1..1..1..1....1..1..1..0
		

Formula

Empirical: a(n) = 7*a(n-1) -6*a(n-2) -42*a(n-3) +62*a(n-4) +91*a(n-5) -149*a(n-6) -91*a(n-7) +138*a(n-8) +42*a(n-9) -50*a(n-10) -7*a(n-11) +6*a(n-12) for n>13

A207941 Number of 5Xn 0..1 arrays avoiding 0 0 1 and 1 0 0 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

10, 100, 350, 1271, 5594, 25490, 121313, 584386, 2841676, 13864995, 67793828, 331778574, 1624527917, 7956223332, 38970988538, 190898358977, 935140523244, 4580980652676, 22441074230301, 109933649821120, 538540783077848
Offset: 1

Views

Author

R. H. Hardin Feb 21 2012

Keywords

Comments

Row 5 of A207938

Examples

			Some solutions for n=4
..0..1..1..0....0..0..0..0....1..0..1..1....1..0..1..0....1..1..1..1
..1..1..0..1....1..0..1..1....1..1..0..1....0..1..1..0....1..0..1..0
..1..1..1..1....0..0..0..0....1..1..1..1....1..0..1..0....1..1..1..1
..1..1..1..1....0..0..0..0....1..1..1..1....1..1..1..0....1..0..1..1
..1..1..1..1....0..0..0..0....1..1..1..1....1..1..1..0....1..0..1..1
		

Formula

Empirical: a(n) = 8*a(n-1) -5*a(n-2) -82*a(n-3) +113*a(n-4) +341*a(n-5) -502*a(n-6) -765*a(n-7) +943*a(n-8) +998*a(n-9) -797*a(n-10) -709*a(n-11) +275*a(n-12) +233*a(n-13) -26*a(n-14) -24*a(n-15) for n>16

A207942 Number of 6Xn 0..1 arrays avoiding 0 0 1 and 1 0 0 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

12, 144, 556, 2239, 11256, 58602, 319439, 1760946, 9794226, 54631117, 305277128, 1707053280, 9549210261, 53426703442, 298941739494, 1672751399083, 9360192196998, 52377176867242, 293090264883289, 1640067205915482
Offset: 1

Views

Author

R. H. Hardin Feb 21 2012

Keywords

Comments

Row 6 of A207938

Examples

			Some solutions for n=4
..0..0..0..0....1..1..0..1....0..0..0..0....1..1..1..1....0..1..0..1
..0..0..0..0....0..1..1..0....0..1..0..1....1..1..1..1....1..1..0..1
..0..0..0..0....1..1..1..0....0..1..0..1....1..1..1..1....0..1..0..1
..0..0..0..0....0..1..1..0....0..1..0..1....1..1..1..1....1..1..0..1
..0..0..0..0....0..1..1..0....0..1..0..1....1..1..1..1....0..1..0..1
..0..0..0..0....0..1..1..0....0..1..0..1....1..1..1..1....1..1..0..1
		

Formula

Empirical: a(n) = 10*a(n-1) -13*a(n-2) -131*a(n-3) +320*a(n-4) +667*a(n-5) -2129*a(n-6) -1725*a(n-7) +6833*a(n-8) +2569*a(n-9) -11863*a(n-10) -2473*a(n-11) +11282*a(n-12) +1603*a(n-13) -5660*a(n-14) -606*a(n-15) +1351*a(n-16) +86*a(n-17) -120*a(n-18) for n>19

A207943 Number of 7Xn 0..1 arrays avoiding 0 0 1 and 1 0 0 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

14, 196, 826, 3641, 20568, 120276, 737575, 4570122, 28555126, 178852957, 1121957980, 7041891730, 44211129243, 277603005560, 1743182466528, 10946427636013, 68739662962482, 431662923010836, 2710711178183705
Offset: 1

Views

Author

R. H. Hardin Feb 21 2012

Keywords

Comments

Row 7 of A207938

Examples

			Some solutions for n=4
..1..0..1..1....0..1..0..1....1..0..1..1....0..0..0..0....0..0..0..0
..0..1..0..1....1..0..1..0....0..1..1..1....1..0..1..0....0..1..0..1
..1..0..1..1....1..0..1..0....0..1..1..1....1..0..1..0....0..1..0..1
..0..1..0..1....1..0..1..0....0..1..1..1....1..0..1..0....0..1..0..1
..0..1..1..1....1..0..1..0....0..1..1..1....1..0..1..0....0..1..0..1
..0..1..0..1....1..0..1..0....0..1..1..1....1..0..1..0....0..1..0..1
..0..1..0..1....1..0..1..0....0..1..1..1....1..0..1..0....0..1..0..1
		

Formula

Empirical: a(n) = 11*a(n-1) -12*a(n-2) -210*a(n-3) +495*a(n-4) +1675*a(n-5) -4933*a(n-6) -7524*a(n-7) +24432*a(n-8) +22034*a(n-9) -69076*a(n-10) -45806*a(n-11) +114911*a(n-12) +67305*a(n-13) -109800*a(n-14) -63536*a(n-15) +56149*a(n-16) +33715*a(n-17) -13209*a(n-18) -8384*a(n-19) +1044*a(n-20) +720*a(n-21) for n>22

A207934 Number of n X n 0..1 arrays avoiding 0 0 1 and 1 0 0 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

2, 16, 98, 643, 5594, 58602, 737575, 10609482, 171524786, 3063622641, 59875563176, 1270299719270, 29076260441101, 714274071132328, 18746674985446278, 523589036696879095, 15507197067809135806, 485494086155807224584
Offset: 1

Views

Author

R. H. Hardin Feb 21 2012

Keywords

Comments

Diagonal of A207938

Examples

			Some solutions for n=4
..1..0..1..0....0..0..0..0....1..0..1..1....0..0..0..0....1..1..1..1
..1..1..1..1....0..0..0..0....0..1..0..1....1..0..1..1....1..1..1..1
..1..1..1..1....0..0..0..0....0..1..0..1....0..0..0..0....1..1..1..1
..1..1..1..1....0..0..0..0....0..1..0..1....0..0..0..0....1..1..1..1
		
Showing 1-9 of 9 results.