A207974 Triangle related to A152198.
1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 4, 2, 2, 1, 1, 5, 2, 4, 1, 1, 1, 6, 3, 6, 3, 2, 1, 1, 7, 3, 9, 3, 5, 1, 1, 1, 8, 4, 12, 6, 8, 4, 2, 1, 1, 9, 4, 16, 6, 14, 4, 6, 1, 1, 1, 10, 5, 20, 10, 20, 10, 10, 5, 2, 1
Offset: 0
Examples
Triangle begins : n\k [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [0] 1; [1] 1, 1; [2] 1, 2, 1; [3] 1, 3, 1, 1; [4] 1, 4, 2, 2, 1; [5] 1, 5, 2, 4, 1, 1; [6] 1, 6, 3, 6, 3, 2, 1; [7] 1, 7, 3, 9, 3, 5, 1, 1; [8] 1, 8, 4, 12, 6, 8, 4, 2, 1; [9] 1, 9, 4, 16, 6, 14, 4, 6, 1, 1; [10] ...
Links
- Gheorghe Coserea, Rows n = 0..200, flattened
Crossrefs
Programs
-
Maple
A207974 := proc(n,k) if k = 0 then 1; elif k < 0 or k > n then 0 ; else procname(n-1,k-1)-(-1)^k*procname(n-1,k) ; end if; end proc: # R. J. Mathar, Apr 08 2013
-
PARI
seq(N) = { my(t = vector(N+1, n, vector(n, k, k==1 || k == n))); for(n = 2, N+1, for (k = 2, n-1, t[n][k] = t[n-1][k-1] + (-1)^(k%2)*t[n-1][k])); return(t); }; concat(seq(10)) \\ Gheorghe Coserea, Jun 09 2016
-
PARI
P(n) = ((2+x+(n%2)*x^2) * (1+x^2)^(n\2) - 2)/x; concat(vector(11, n, Vecrev(P(n-1)))) \\ Gheorghe Coserea, Mar 14 2017
Formula
T(n,k) = T(n-1,k-1) - (-1)^k*T(n-1,k), k>0 ; T(n,0) = 1.
T(2n,2k) = T(2n+1,2k) = binomial(n,k) = A007318(n,k).
T(2n+1,2k+1) = A110813(n,k).
T(2n+2,2k+1) = 2*A135278(n,k).
T(n,2k) + T(n,2k+1) = A152201(n,k).
T(n,2k) = A152198(n,k).
T(n+1,2k+1) = A152201(n,k).
T(n,k) = T(n-2,k-2) + T(n-2,k).
T(2n,n) = A128014(n+1).
T(n,k) = card {p, 2^n <= A057890(p) <= 2^(n+1)-1 and A000120(A057890(p)) = k+1}. - Gheorghe Coserea, Jun 09 2016
P_n(x) = Sum_{k=0..n} T(n,k)*x^k = ((2+x+(n mod 2)*x^2)*(1+x^2)^(n\2) - 2)/x. - Gheorghe Coserea, Mar 14 2017
Comments