A207992 Primes p of the form p = prime(n) + prime(n+1) - 5 and p = prime(k) + prime(k+1) + 5.
13, 47, 73, 157, 167, 263, 467, 757, 877, 887, 2027, 2593, 3203, 3733, 4273, 4703, 4787, 5087, 5387, 6373, 6637, 7393, 7823, 8893, 9587, 10007, 10163, 12433, 13933, 15083, 15287, 15373, 16333, 17387, 17483, 18013, 18313, 19237, 19477, 20327, 21467, 23567
Offset: 1
Examples
3+5+5 = 13 = 7+11-5, 23+29-5 = 47 = 19+23+5
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
a1 = Select[Table[Prime[n] + Prime[n + 1] - 5, {n, 2010}], PrimeQ]; a2 = Select[Table[Prime[n] + Prime[n + 1] + 5, {n, 2000}], PrimeQ]; Intersection[a1, a2] With[{pr=Transpose[#+{5,-5}&/@Total/@Partition[Prime[Range[3000]],2,1]]}, Select[Intersection[pr[[1]],pr[[2]]], PrimeQ]] (* Harvey P. Dale, Mar 13 2013 *)
-
PARI
p=2;q=3;r=5;forprime(s=7,1e4,if((r==p+10||r+s==p+q+10) && isprime(p+q+5), print1(p+q+5", "));p=q;q=r;r=s) \\ Charles R Greathouse IV, Apr 16 2012
Comments