A208184 Number of distinct n-colored necklaces with 3 beads per color.
1, 1, 4, 188, 30804, 11211216, 7623616080, 8690922240480, 15391623287043360, 40018220546304026880, 146226577876194816241920, 725283826265926287362419200, 4746982642910487550771226611200, 40045545575592872978305843519334400
Offset: 0
Keywords
Examples
a(0) = 1: the empty necklace. a(1) = 1: {000}. a(2) = 4: {000111, 001011, 010011, 010101}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..80
Programs
-
Maple
with(numtheory); a:= n-> `if`(n=0, 1, add(phi(3/d) *(n*d)!/(d!^n *3*n), d={1, 3})): seq(a(n), n=0..20);
-
Mathematica
Flatten[{1, Table[(3*n)!/(3*n*6^n) + 2*(n-1)!/3, {n, 1, 20}]}] (* Vaclav Kotesovec, Aug 23 2015 *)
Formula
a(n) = Sum_{d|3} phi(3/d)*(n*d)!/(d!^n*n*3) if n>0 and a(0) = 1.
For n > 0, a(n) = (3*n)!/(3*n*6^n) + 2*(n-1)!/3. - Vaclav Kotesovec, Aug 23 2015