A208205 a(n)=(a(n-1)*a(n-2)^5+1)/a(n-3) with a(0)=a(1)=a(2)=1.
1, 1, 1, 2, 3, 97, 11786, 33736797423001, 79097781524295318019203322936641
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..11
- Sergey Fomin and Andrei Zelevinsky, The Laurent phenomenon, arXiv:math/0104241v1 [math.CO] (2001), Advances in Applied Mathematics 28 (2002), 119-144.
Programs
-
Maple
a:=proc(n) if n<3 then return 1: fi: return (a(n-1)*a(n-2)^5+1)/a(n-3): end: seq(a(i),i=1..10);
-
Mathematica
RecurrenceTable[{a[n] == (a[n - 1] a[n - 2]^5 + 1)/a[n - 3], a[0] == a[1] == a[2] == 1}, a, {n, 0, 8}] (* Michael De Vlieger, Mar 19 2017 *) nxt[{a_,b_,c_}]:={b,c,(c*b^5+1)/a}; NestList[nxt,{1,1,1},10][[All,1]] (* Harvey P. Dale, Sep 13 2022 *)
Formula
From Vaclav Kotesovec, May 20 2015: (Start)
a(n) ~ c1^(d1^n) * c2^(d2^n) * c3^(d3^n), where
d1 = -1.903211925911553287485216224057094233775314050044332659604216582082...
d2 = 0.1939365664746304482560845569332033002552873106788960042162607290276...
d3 = 2.7092753594369228392291316671238909335200267393654366553879558530545...
are the roots of the equation d^3 + 1 = d^2 + 5*d and
c1 = 0.9741074409555962981370572554321352591111177638556227590517984272608...
c2 = 0.0499759123576461468686480770163694779918691526759585723897652462761...
c3 = 1.0272217210627198315132544386598971884129462517962425299212701250318...
(End)
Comments