A208224 a(n)=(a(n-1)^2*a(n-3)^3+a(n-2))/a(n-4) with a(0)=a(1)=a(2)=a(3)=1.
1, 1, 1, 1, 2, 5, 27, 5837, 2129410576, 17850077316687753782569, 2346851008195218976646246398770505953580095510848345967
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..13
- Sergey Fomin and Andrei Zelevinsky, The Laurent phenomenon, arXiv:math/0104241v1 [math.CO] (2001), Advances in Applied Mathematics 28 (2002), 119-144.
Programs
-
Maple
y:=proc(n) if n<4 then return 1: fi: return (y(n-1)^2*y(n-3)^3+y(n-2))/y(n-4): end: seq(y(n),n=0..11);
-
Mathematica
RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==1,a[n]==(a[n-1]^2*a[n-3]^3+ a[n-2])/ a[n-4]},a,{n,10}] (* Harvey P. Dale, Mar 06 2017 *)
Comments