A208226 a(n)=(a(n-1)*a(n-3)^4+a(n-2))/a(n-4) with a(0)=a(1)=a(2)=a(3)=1.
1, 1, 1, 1, 2, 3, 5, 83, 3364, 700861, 6652337263549, 10264082055393717193904815, 736193034562641516492404723890409674438627151, 2057106833431631102316572923185391939849261245309254135929044995902093016346478213863681606
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..16
- Sergey Fomin and Andrei Zelevinsky, The Laurent phenomenon, arXiv:math/0104241v1 [math.CO] (2001), Advances in Applied Mathematics 28 (2002), 119-144.
Programs
-
Maple
y:=proc(n) if n<4 then return 1: fi: return (y(n-1)*y(n-3)^4+y(n-2))/y(n-4): end: seq(y(n),n=0..13);
-
Mathematica
a[n_]:=If[n<4,1, (a[n - 1] *a[n- 3]^4 + a[n - 2])/a[n - 4]]; Table[a[n], {n, 0, 12}] (* Indranil Ghosh, Mar 19 2017 *) RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==1,a[n]==(a[n-1]a[n-3]^4+ a[n-2])/ a[n-4]},a,{n,14}] (* Harvey P. Dale, Dec 29 2018 *)
Extensions
One more term from Harvey P. Dale, Dec 29 2018
Comments