A208224
a(n)=(a(n-1)^2*a(n-3)^3+a(n-2))/a(n-4) with a(0)=a(1)=a(2)=a(3)=1.
Original entry on oeis.org
1, 1, 1, 1, 2, 5, 27, 5837, 2129410576, 17850077316687753782569, 2346851008195218976646246398770505953580095510848345967
Offset: 0
-
y:=proc(n) if n<4 then return 1: fi: return (y(n-1)^2*y(n-3)^3+y(n-2))/y(n-4): end:
seq(y(n),n=0..11);
-
RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==1,a[n]==(a[n-1]^2*a[n-3]^3+ a[n-2])/ a[n-4]},a,{n,10}] (* Harvey P. Dale, Mar 06 2017 *)
A208228
a(n)=(a(n-1)^3*a(n-3)^4+a(n-2))/a(n-4) with a(0)=a(1)=a(2)=a(3)=1.
Original entry on oeis.org
1, 1, 1, 1, 2, 9, 731, 6249886265, 800859597553373777918076329400178
Offset: 0
-
y:=proc(n) if n<4 then return 1: fi: return (y(n-1)^3*y(n-3)^4+y(n-2))/y(n-4): end:
seq(y(n),n=0..9);
-
RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==1,a[n]==(a[n-1]^3 a[n-3]^4+ a[n-2])/ a[n-4]},a,{n,10}] (* Harvey P. Dale, Jan 08 2014 *)
A208226
a(n)=(a(n-1)*a(n-3)^4+a(n-2))/a(n-4) with a(0)=a(1)=a(2)=a(3)=1.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 5, 83, 3364, 700861, 6652337263549, 10264082055393717193904815, 736193034562641516492404723890409674438627151, 2057106833431631102316572923185391939849261245309254135929044995902093016346478213863681606
Offset: 0
-
y:=proc(n) if n<4 then return 1: fi: return (y(n-1)*y(n-3)^4+y(n-2))/y(n-4): end:
seq(y(n),n=0..13);
-
a[n_]:=If[n<4,1, (a[n - 1] *a[n- 3]^4 + a[n - 2])/a[n - 4]]; Table[a[n], {n, 0, 12}] (* Indranil Ghosh, Mar 19 2017 *)
RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==1,a[n]==(a[n-1]a[n-3]^4+ a[n-2])/ a[n-4]},a,{n,14}] (* Harvey P. Dale, Dec 29 2018 *)
Showing 1-3 of 3 results.
Comments