A208242 Perfect powers y^q with y > 1 and q > 1 which are Brazilian repunits with three or more digits in some base.
121, 343, 400
Offset: 1
Examples
121 = 11^2 = (3^5 - 1)/ (3 - 1) = 11111_3. 343 = 7^3 = (18^3 - 1)/(18 - 1) = 111_18. 400 = 20^2 = (7^4 - 1)/ (7 - 1) = 1111_7.
Links
- Y. Bugeaud and M. Mignotte, L'équation de Nagell-Ljunggren (x^n-1)/(x-1) = y^q, Enseign. Math. 48(2002), 147-168.
Crossrefs
Programs
-
PARI
is(n) = if(!ispower(n), return(0)); for(b=2, n-1, my(d=digits(n, b)); if(#d > 2 && vecmin(d)==1 && vecmax(d)==1, return(1))); 0 \\ Felix Fröhlich, Apr 29 2019
Extensions
Small edits to the name by Bernard Schott, Apr 30 2019
Comments