cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208245 Triangle read by rows: a(n,k) = a(n-2,k) + a(n-2,k-1).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 3, 3, 2, 1, 1, 1, 3, 4, 3, 2, 1, 1, 1, 4, 6, 5, 3, 2, 1, 1, 1, 4, 7, 7, 5, 3, 2, 1, 1, 1, 5, 10, 11, 8, 5, 3, 2, 1, 1, 1, 5, 11, 14, 12, 8, 5, 3, 2, 1, 1, 1, 6, 15, 21, 19, 13, 8, 5, 3, 2, 1, 1, 1, 6, 16, 25, 26, 20, 13, 8, 5, 3, 2, 1, 1
Offset: 1

Views

Author

Richard R. Forberg, Apr 22 2013

Keywords

Comments

Sum of terms in each row are given by sequence A052955.
Columns (at constant k) converge toward Fibonacci starting first from high value of k).
First seven rows are same as A008242. The odd numbered rows of this sequence equal the rows of A123736. Also it has some similarities to A162741.
Columns (constant k), prior to convergence to Fibonacci, appear as various other sequences (e.g. k = 4, is sequence A055803, with other columns in same referenced family).

Examples

			The first 13 rows are (as above) where n is the row index:
1
1, 1
1, 1, 1
1, 2, 1, 1
1, 2, 2, 1, 1
1, 3, 3, 2, 1, 1
1, 3, 4, 3, 2, 1, 1
1, 4, 6, 5, 3, 2, 1, 1
1, 4, 7, 7, 5, 3, 2, 1, 1
1, 5, 10, 11, 8, 5, 3, 2, 1, 1
1, 5, 11, 14, 12, 8, 5, 3, 2, 1, 1
1, 6, 15, 21, 19, 13, 8, 5, 3, 2, 1, 1
1, 6, 16, 25, 26, 20, 13, 8, 5, 3, 2, 1, 1,
		

Crossrefs

Cf. A000045 (central terms).

Programs

  • Haskell
    a208245 n k = a208245_tabl !! (n-1) !! (k-1)
    a208245_row n = a208245_tabl !! (n-1)
    a208245_tabl = map fst $ iterate f ([1], [1, 1]) where
       f (us, vs) = (vs, zipWith (+) ([0] ++ us ++ [0]) (us ++ [0, 1]))
    -- Reinhard Zumkeller, Jul 28 2013

Formula

a(n,k) = a(n-2,k) + a(n-2,k-1); if n=k or k=1 then a(n,k)=1; if n