A208344 Triangle of coefficients of polynomials u(n,x) jointly generated with A208345; see the Formula section.
1, 1, 1, 1, 1, 3, 1, 1, 4, 7, 1, 1, 5, 10, 17, 1, 1, 6, 13, 27, 41, 1, 1, 7, 16, 38, 71, 99, 1, 1, 8, 19, 50, 106, 186, 239, 1, 1, 9, 22, 63, 146, 294, 484, 577, 1, 1, 10, 25, 77, 191, 424, 806, 1253, 1393, 1, 1, 11, 28, 92, 241, 577, 1212, 2191, 3229, 3363, 1, 1, 12
Offset: 1
Examples
First five rows: 1; 1, 1; 1, 1, 3; 1, 1, 4, 7; 1, 1, 5, 10, 17; First five polynomials u(n,x): 1 1 + x 1 + x + 3x^2 1 + x + 4x^2 + 7x^3 1 + x + 5x^2 + 10x^3 + 17x^4. From _Philippe Deléham_, Apr 09 2012: (Start) (1, 0, -1, 1, 0, 0, ...) DELTA (0, 1, 2, -1, 0, 0, ...) begins: 1; 1, 0; 1, 1, 0; 1, 1, 3, 0; 1, 1, 4, 7, 0; 1, 1, 5, 10, 17, 0; 1, 1, 6, 13, 27, 41, 0; (End)
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 13; u[n_, x_] := u[n - 1, x] + x*v[n - 1, x]; v[n_, x_] := x*u[n - 1, x] + 2 x*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A208344 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A208345 *) Table[u[n, x] /. x -> 1, {n, 1, z}] Table[v[n, x] /. x -> 1, {n, 1, z}]
Formula
u(n,x) = u(n-1,x) + x*v(n-1,x),
v(n,x) = x*u(n-1,x) + 2x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Apr 09 2012: (Start)
As DELTA-triangle T(n,k) with 0 <= k <= n:
G.f.: (1-2*y*x+y*x^2-y^2*x^2)/(1-x-2*y*x+2*y*x^2-y^2*x^2).
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) -2*T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = T(2,1) = 1, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k < 0 or if k > n. (End)
Working with an offset of 0, the row reversed triangle is the Riordan array ( (1 - x)/(1 - 2*x - x^2), x*(1 - 2*x)/(1 - 2*x - x^2) ) with g.f. (1 - x)/(1 - (2 + y)*x - (1 - 2*y)*x^2) = 1 + (1 + y)*x + (3 + y + y^2)*x^2 + (7 + 4*y + y^2 + y^3)*x^3 + .... - Peter Bala, Jun 01 2024
Extensions
a(69) corrected by Georg Fischer, Sep 03 2021
Comments