cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A002410 Nearest integer to imaginary part of n-th zero of Riemann zeta function.

Original entry on oeis.org

14, 21, 25, 30, 33, 38, 41, 43, 48, 50, 53, 56, 59, 61, 65, 67, 70, 72, 76, 77, 79, 83, 85, 87, 89, 92, 95, 96, 99, 101, 104, 105, 107, 111, 112, 114, 116, 119, 121, 123, 124, 128, 130, 131, 133, 135, 138, 140, 141, 143, 146, 147, 150, 151, 153, 156, 158, 159, 161
Offset: 1

Views

Author

Keywords

Comments

"All these zeros of the form s + it have real part s = 1/2 and are simple. Thus the Riemann hypothesis is true at least for t < 3330657430697." - Wedeniwski
From Daniel Forgues, Jul 24 2009: (Start)
All nontrivial zeros on the critical line, of the form 1/2 + i*t, have an associated conjugate nontrivial zero of the form 1/2 - i*t.
Any nontrivial zeros off the critical line, if ever found, would come in pairs (1/2 +- delta) + i*t, 0 < delta < 1/2. Each of these pairs, again if ever found, would then have their associated conjugate pair (1/2 +- delta) - i*t, 0 < delta < 1/2. (End)
The sequence is not strictly increasing. - Joerg Arndt, Jan 17 2015
The fraction of numbers n such that a(n) = a(n-1) has density 1. There are only finitely many numbers n with a(n) > a(n-1) + 1, see A208436. - Charles R Greathouse IV, Mar 07 2018
Conjecture: Noninteger rationals of the form m/2^bigomega(m) that can be used to approximate this sequence, i.e. a(n) ~~ 2*Pi*A374074(n)/2^bigomega(A374074(n)) - n/2 +- (...), where '~~' means 'close to'. - Friedjof Tellkamp, Jul 04 2024

Examples

			The imaginary parts of the first 4 zeros are 14.134725... (A058303), 21.0220396... (A065434), 25.01085758... (A065452), 30.424876... (A065453).
		

References

  • Gregory Benford, Gravity's whispers, Futures Column, Nature, 446 (Jul 15 2010), p. 406. [Gravity waves are detected on Earth that turn out to contain a list of the zeros of the Riemann zeta function, essentially this sequence]
  • E. Bombieri, "The Riemann Hypothesis" in 'The Millennium Prize Problems' Chap. 7 pp. 107-128 Eds: J. Carlson, A. Jaffe & A. Wiles, Amer. Math. Soc. Providence RI 2006.
  • P. Borwein et al., The Riemann Hypothesis, Can. Math. Soc. (CMS) Ottawa ON 2007.
  • S. Chowla, Riemann Hypothesis and Hilbert's Tenth Problem, Mathematics and Its Application Series Vol. 4, Taylor & Francis NY 1965.
  • J. Derbyshire, Prime Obsession, Penguin Books 2004.
  • K. Devlin, The Millennium Problems, Chapter 1 (pp. 19-62) Basic Books NY 2002.
  • M. du Sautoy, The Music of the Primes, Fourth Estate/HarperCollins NY 2003.
  • H. M. Edwards, Riemann's Zeta Function, Academic Press, NY, 1974, p. 96.
  • C. B. Haselgrove and J. C. P. Miller, Tables of the Riemann Zeta Function. Royal Society Mathematical Tables, Vol. 6, Cambridge Univ. Press, 1960, p. 58.
  • A. Ivic, The Riemann Zeta-Function: Theory and Applications, Dover NY 2003.
  • D. S. Jandu, Riemann Hypothesis and Prime Number Theorem, Infinite Bandwidth Publishing, N. Hollywood CA 2006.
  • A. A. Karatsuba & S. M. Voronin, The Riemann Zeta-Function, Walter de Gruyter, Berlin 1992.
  • G. Lachaud, "L'hypothèse de Riemann" in La Recherche No.346 October 2001 pp. 24-30 (or Les Dossiers de La Recherche No. Aug 20 2005 pp. 26-35) Paris.
  • M. L. Lapidus, In Search of the Riemann Zeros, Amer. Math. Soc. (AMS) Providence RI 2008.
  • P. Meier & J. Steuding, "L'hypothèse de Riemann" in 'Pour la Science' (French Edition of 'Scientific American') pp 22-9, March 2009, Issue No. 377, Paris.
  • P. Odifreddi, The Mathematical Century, Chapter 5.2, p. 168, Princeton Univ. Press NJ 2004.
  • S. J. Patterson, An Introduction to the Theory of the Riemann Zeta-Function, Cambridge Univ. Press, UK 1995.
  • D. N. Rockmore, Stalking the Riemann Hypothesis, Jonathan Cape UK 2005.
  • K. Sabbagh, The Riemann Hypothesis, Farrar Straus Giroux NY 2003.
  • K. Sabbagh, Dr. Riemann's Zeros, Atlantic Books London 2003.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Clarendon Press NY 1986.

Crossrefs

Cf. A013629 (floor), A092783 (ceiling), A057641, A057640, A058209, A058210, A120401, A122526, A072080, A124288 ("unstable" zeta zeros), A124289 ("unstable twins"), A236212, A177885, A374074 (approximation).
Imaginary part of k-th nontrivial zero of Riemann zeta function: A058303 (k=1), A065434 (k=2), A065452 (k=3), A065453 (k=4), A192492 (k=5), A305741 (k=6), A305742 (k=7), A305743 (k=8), A305744 (k=9), A306004 (k=10).

Programs

Formula

a(n) ~ (2*Pi*e) * e^(W0(n/e)), where W0 is the principal branch of Lambert's W function. - Charles R Greathouse IV, Sep 14 2012, corrected by Hal M. Switkay, Oct 04 2021
a(n) ~ 2*Pi*(n - 11/8)/ProductLog((n - 11/8)/exp(1)). This is the asymptotic by Guilherme França and André LeClair. - Mats Granvik, Mar 10 2015; corrected May 16 2016

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 08 2004

A161914 Gaps between the nontrivial zeros of Riemann zeta function, rounded to nearest integers, with a(1)=14.

Original entry on oeis.org

14, 7, 4, 5, 3, 5, 3, 2, 5, 2, 3, 3, 3, 1, 4, 2, 2, 3, 4, 1, 2, 4, 2, 3, 1, 4, 2, 1, 3, 2, 2, 2, 2, 4, 1, 2, 2, 3, 3, 2, 1, 3, 2, 2, 2, 1, 3, 2, 1, 2, 3, 1, 3, 1, 2, 3, 1, 1, 2, 2, 3, 2, 2, 1, 3, 1, 2, 2, 2, 2, 3, 1, 2, 2, 3, 1, 2, 2, 1, 3, 1, 2, 1, 3, 2, 2, 2, 1, 2, 3, 2, 1, 3, 1, 2, 2, 2, 1, 2, 3, 1, 2, 1, 2, 1
Offset: 1

Views

Author

Omar E. Pol, Jun 26 2009

Keywords

Comments

We consider here the imaginary part of 1/2 + iy = z, for which Zeta(z) is a zero.
Note that these are not the first differences of A002410 because rounding is done here AFTER computing the differences. - R. J. Mathar, Jul 04 2009
What is the largest n such that a(n) > 0? - Charles R Greathouse IV, Jan 08 2012
This doesn't seem feasible to compute, probably more than 10^200. - Charles R Greathouse IV, Jan 29 2013

Examples

			The absolute difference between the first nontrivial zero (14.134725...) and the second nontrivial zero (21.022039...) is equal to 6.887314... which rounded to nearest integer is equal to 7, then a(2) = 7.
		

Crossrefs

Programs

  • Mathematica
    Join[{14}, Table[Round[Im[ZetaZero[n] - ZetaZero[n - 1]]], {n, 2, 100}]] (* Alonso del Arte, Jan 29 2013 *)
  • PARI
    diff(v)=vector(#v-1,i,v[i+1]-v[i])
    concat(14, round(diff(lfunzeros(lzeta, 100)))) \\ Charles R Greathouse IV, Jul 26 2021

Extensions

Extended by R. J. Mathar, Jul 04 2009

A210447 Number of primes <= Im(rho_n), where rho_n is the n-th nontrivial zero of Riemann zeta function.

Original entry on oeis.org

6, 8, 9, 10, 11, 12, 12, 14, 15, 15, 16, 16, 17, 17, 18, 19, 19, 20, 21, 21, 22, 22, 23, 23, 23, 24, 24, 24, 25, 26, 27, 27, 28, 29, 29, 30, 30, 30, 30, 30, 30, 31, 31, 32, 32, 32, 33, 34, 34, 34, 34, 34, 35, 35, 36, 36, 37, 37, 37, 38, 38, 39, 39, 39, 40, 40
Offset: 1

Views

Author

Omar E. Pol, Feb 03 2013

Keywords

Comments

The zeros -2, -4, -6, ... of the Riemann zeta function are considered trivial. The nontrivial zeros are in the "critical strip" 0 < Re(rho_n) < 1. All of the known nontrivial zeros have real part 1/2. In this sequence, we count the prime numbers less than or equal to the imaginary part of these nontrivial zeros.
The Riemann hypothesis (currently unproven) states that all of the nontrivial zeros have real part 1/2.

Examples

			a(8) = 12 because the 8th nontrivial zero of Riemann zeta function is 0.5 + (40.91...)i and there are 12 primes less than or equal to 40.91...; they are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, and 37.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := PrimePi@ Im@ ZetaZero@ n; Array[f, 70] (* Robert G. Wilson v, Jan 27 2015 *)

A221974 Numbers n such that A161914(n) = 0.

Original entry on oeis.org

187, 213, 299, 316, 364, 379, 437, 454, 478, 486, 509, 580, 607, 620, 644, 670, 694, 696, 717, 752, 795, 846, 850, 871, 884, 890, 906, 923, 937, 939, 944, 966, 986, 997, 1030, 1045, 1048, 1096, 1135, 1150, 1158, 1167, 1181, 1209, 1229, 1233, 1239, 1252, 1272
Offset: 1

Views

Author

Omar E. Pol, Feb 02 2013

Keywords

Comments

Sequence related to nontrivial zeros of Riemann zeta function.

Crossrefs

Programs

  • Mathematica
    Position[Table[Round@Im[ZetaZero[n] - ZetaZero[n - 1]], {n, 2, 509}], 0] + 1 // Flatten (* Arkadiusz Wesolowski, Feb 05 2013 *)

Formula

a(n) ~ n. There are constants N and k such that for all n > N, a(n) = n + k. - Charles R Greathouse IV, Apr 18 2013

Extensions

a(35)-a(49) from Arkadiusz Wesolowski, Feb 05 2013
Showing 1-4 of 4 results.