cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208437 Triangular array read by rows: T(n,k) is the number of set partitions of {1,2,...,n} that have exactly k distinct block sizes.

Original entry on oeis.org

1, 2, 2, 3, 5, 10, 2, 50, 27, 116, 60, 2, 560, 315, 142, 1730, 2268, 282, 6123, 14742, 1073, 30122, 72180, 12600, 2, 116908, 464640, 97020, 32034, 507277, 2676366, 997920, 2, 2492737, 16400098, 8751600, 136853, 15328119, 94209206, 81225144, 1527528, 56182092, 673282610, 614128515, 37837800
Offset: 1

Views

Author

Geoffrey Critzer, Feb 26 2012

Keywords

Comments

Column 1 = A038041.
Column 2 = A088142.
Column 3 = A133118.
Row sums = A000110 (Bell numbers).
Row n has floor([sqrt(1+8n)-1]/2) terms (number of terms increases by one at each triangular number). - Franklin T. Adams-Watters, Feb 26 2012

Examples

			:    1;
:    2;
:    2,      3;
:    5,     10;
:    2,     50;
:   27,    116,     60;
:    2,    560,    315;
:  142,   1730,   2268;
:  282,   6123,  14742;
: 1073,  30122,  72180,   12600;
		

Crossrefs

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
          `if`(i<1, 0, add(multinomial(n, n-i*j, i$j)/j!*
          b(n-i*j, i-1)*`if`(j=0, 1, x), j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n$2)):
    seq(T(n), n=1..16);  # Alois P. Heinz, Aug 21 2014
  • Mathematica
    nn = 15; p = Product[1 + y (Exp[x^i/i!] - 1), {i, 1, nn}];f[list_] := Select[list, # > 0 &];
    Map[f, Drop[ Range[0, nn]! CoefficientList[Series[p, {x, 0, nn}], {x, y}], 1]] // Flatten

Formula

E.g.f.: Product_{i>=1} 1 + y *(exp(x^i/i!)-1).
T(n*(n+1)/2,n) = A022915(n). - Alois P. Heinz, Apr 08 2016