cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A097125 Number of noncongruent integer-sided tetrahedra with largest side n.

Original entry on oeis.org

1, 4, 16, 45, 116, 254, 516, 956, 1669, 2760, 4379, 6676, 9888, 14219, 19956, 27421, 37062, 49143, 64272, 82888, 105629, 133132, 166090, 205223, 251624, 305861, 369247, 442695, 527417, 624483, 735777, 861885, 1005214, 1166797, 1348609
Offset: 1

Views

Author

Sascha Kurz, Jul 26 2004

Keywords

Crossrefs

Programs

  • Mathematica
    cmd3[d01_, d02_, d03_, d12_, d13_, d23s_] := Det[{{0, d01^2, d02^2, d03^2, 1}, {d01^2, 0, d12^2, d13^2, 1}, {d02^2, d12^2, 0, d23s, 1}, {d03^2, d13^2, d23s, 0, 1}, {1, 1, 1, 1, 0}}];
    cmd30s = Sqrt /@ Solve[cmd3[d01, d02, d03, d12, d13, d23s] == 0, d23s][[;;,1,2]];
    edgePermutations = PermutationList[#, 6] & /@ GroupElements@PermutationGroup[{Cycles[{{2, 4}, {3, 5}}], Cycles[{{1, 2}, {5, 6}}], Cycles[{{2, 3}, {4, 5}}]}];
    canonical[dd_] := AllTrue[edgePermutations, OrderedQ[{dd[[#]], dd}] &];
    a[d_] := Module[{s = 0, dd, uu}, Do[With[{roots = (cmd30s /. {d01 -> d})},
       dd = Min[Floor /@ roots + 1]; uu = Min[Max[Ceiling /@ roots - 1], d];
       Do[If[canonical[{d, d02, d03, d12, d13, d23}], s += 1], {d23, dd, uu}]],
      {d02, Quotient[d, 2] + 1, d}, {d12, d + 1 - d02, d02}, {d03, d + 1 - d02, d02}, {d13, d + 1 - d03, d02}]; s];
    Array[a, 10] (* Andrey Zabolotskiy, Apr 04 2024, after Kurz's Algorithm 1 *)

A371070 a(n) is the number of distinct volumes > 0 of tetrahedra with the sum of their integer edge lengths equal to n.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 3, 2, 3, 6, 5, 7, 12, 10, 16, 19, 21, 26, 34, 37, 44, 56, 60, 67, 93, 92, 111, 137, 140, 166, 192, 211, 246, 279, 306, 333, 392, 428, 464, 538, 565, 627, 709, 768, 826, 939, 998, 1089, 1230, 1312, 1403, 1590, 1658, 1798, 1987, 2088, 2266, 2495
Offset: 6

Views

Author

Hugo Pfoertner, Mar 18 2024

Keywords

Crossrefs

Programs

  • PARI
    a371070(n) = {my (L=List()); forpart (w=n, forperm (w,v, if(v[4]+v[5]0, listput (L,CM))), [1,n], [6,6]); #Set(Vec(L))};
    
  • Python
    from collections import Counter
    from sympy.utilities.iterables import partitions, multiset_permutations
    def A371070(n):
        CM = lambda x,y,z,t,u,v: (x*y*z<<2)+(a:=x+y-t)*(b:=x+z-u)*(c:=y+z-v)-x*c**2-y*b**2-z*a**2
        TR1 = lambda x,y,z: not(x+y0 and M not in d:
                        d.add(M)
                        c += 1
        return c # Chai Wah Wu, Mar 23 2024

Formula

a(n) <= A208454(n).

A371071 Squared volumes of tetrahedra with integer edge lengths, multiplied by 144.

Original entry on oeis.org

2, 11, 14, 26, 34, 44, 47, 54, 59, 62, 74, 98
Offset: 1

Views

Author

Hugo Pfoertner, Mar 18 2024

Keywords

Comments

The larger terms depend on a lower bound for the minimum volume, which is not yet available. Therefore the data > 100 was removed. See A371072 for progress in determining this lower bound.

Crossrefs

A371072 a(n)/144 is the minimum squared volume > 0 of a tetrahedron with the sum of its integer edge lengths equal to n.

Original entry on oeis.org

11, 14, 44, 26, 59, 34, 47, 126, 119, 62, 215, 54, 107, 98, 243, 146, 335, 142, 191, 614, 479, 194, 764, 423, 299, 254, 1004, 239, 851, 322, 304, 783, 887, 134, 479, 1719, 315, 234, 1196, 191, 896, 574, 767, 1127, 151, 674, 956, 956, 671, 146, 1391, 1082, 791, 898, 263, 1184, 151
Offset: 9

Views

Author

Hugo Pfoertner, Mar 19 2024

Keywords

Comments

a(6) = 2, but since there are no tetrahedra with volume > 0 for n=7 and n=8, the offset 9 is chosen.

Crossrefs

Programs

  • PARI
    a371072(n) = {my (Vmin=oo); forpart (w=n, forperm (w, v, if(v[4]+v[5]0, Vmin=min(Vmin,CM))), [1, n], [6, 6]); Vmin/2};

A371073 a(n)/144 is the maximum squared volume of a tetrahedron with the sum of its integer edge lengths equal to n.

Original entry on oeis.org

11, 14, 44, 128, 108, 188, 368, 448, 828, 1458, 1584, 2151, 3159, 3824, 5616, 8192, 9200, 11504, 15104, 17975, 23600, 31250, 35100, 41975, 51875, 60444, 74700, 93312, 104076, 120924, 143856, 164591, 195804, 235298, 260288, 296303, 343343, 387008, 448448, 524288
Offset: 9

Views

Author

Hugo Pfoertner, Mar 19 2024

Keywords

Examples

			a(12) = 128 corresponds to the regular tetrahedron with all edges equal to 2. Its volume is V=sqrt(2)*2^3/12; V^2 = 2*2^6/12^2 = 128/144.
		

Crossrefs

Showing 1-5 of 5 results.